# Modeling Multiphase Flow and Heat Transfer

## Abstract

This chapter presents the generalized macroscopic (integral) and microscopic (differential) conservation equations for multiphase systems for both local-instance and averaged formulations. The instantaneous formulation requires a differential balance for each phase, combined with appropriate jump and boundary conditions to match the solution of these governing equations at the interfaces. The averaged formulations are obtained by averaging the governing conservation equations within a small time-interval (time average) or a small control volume (spatial average). The governing conservation equations for the multidimensional, multi-fluid, homogeneous, mixture and separated models are also discussed as well as area-averaged governing conservation equations for one-dimensional flows.

## Supplementary material

## References

*ANSYS fluent theory guide*. (2017). ANSYS, Inc.Google Scholar- Avedisian, C. T. (1997). Soot formation in spherically symmetric droplet combustion. In I. Irvin Glassman, F. L. Dryer, & R. F. Sawyer (eds)
*Physical and chemical aspects of combustion*(pp. 135–160). Gordon and Breach Publishers.Google Scholar - Avedisian, C. T. (2000). Recent advances in soot formation from spherical droplet flames at atmospheric pressure.
*Journal of Propulsion and Power,**16,*628–656.CrossRefGoogle Scholar - Bejan, A. (2013).
*Convection heat transfer*(4th ed.). New York: Wiley.CrossRefGoogle Scholar - Bergman, T. L., & Lavine, A. S. (2017).
*Fundamentals of heat and mass transfer*(8th ed.). New York: Wiley.Google Scholar - Boysan, F. (1990).
*A two-fluid model for fluent*. Sheffield, England: Flow Simulation Consultants Ltd.Google Scholar - Edwards, D. K., Denny, V. E., & Mills, A. F. (1979).
*Transfer process*. New York: Hemisphere.Google Scholar - Faghri, A. (2016).
*Heat pipe science and technology*(2nd ed.). Columbia, MO: Global Digital Press.Google Scholar - Faghri, A., Zhang, Y., & Howell, J. R. (2010).
*Advanced heat and mass transfer*. Columbia, MO: Global Digital Press.Google Scholar - Hewitt, G. F. (1998).
*“Multiphase fluid flow and pressure drop”, heat exchanger design handbook*(Vol. 2). New York, NY: Begell House.Google Scholar - Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1966).
*Molecular theory of gases and liquids*. New York: Wiley.zbMATHGoogle Scholar - Kays, W. M., Crawford, M. E., & Weigand, B. (2004).
*Convective heat transfer*(4th ed.). New York, NY: McGraw-Hill.Google Scholar - Kleijn, C. R. (1991). A mathematical model of the hydrodynamics and gas phase reaction in silicon LPCVD in a single wafer reactor.
*Journal of the Electrochemical Society,**138,*2190–2200.CrossRefGoogle Scholar - Lock, G. S. H. (1994).
*Latent heat transfer*. Oxford University, Oxford, UK: Oxford Science Publications.Google Scholar - Mahajan, R. L. (1996). Transport phenomena in chemical vapor-deposition systems. In
*Advances in heat transfer.*Academic Press, San Diego, CA.Google Scholar - Manninen, M., Taivassalo, V., & Kallio, S. (1996). On the mixture model for multiphase flow. VTT Publications 288, Technical Research Centre of Finland.Google Scholar
- Schiller, L., & Naumann, A. (1935). A drag coefficient correlation.
*Zeitschrift des Vereins Deutscher Ingenieure,**77,*318–320.Google Scholar - Welty, J. R., Rorrer, G. L., & Foster, D. G. (2014).
*Fundamentals of momentum, heat and mass transfer*(6th ed.). New York, NY: Wiley.Google Scholar - White, F. M. (2005).
*Viscous fluid flow*(3rd ed.). New York: McGraw-Hill.Google Scholar