Modeling Multiphase Flow and Heat Transfer

  • Amir FaghriEmail author
  • Yuwen Zhang


This chapter presents the generalized macroscopic (integral) and microscopic (differential) conservation equations for multiphase systems for both local-instance and averaged formulations. The instantaneous formulation requires a differential balance for each phase, combined with appropriate jump and boundary conditions to match the solution of these governing equations at the interfaces. The averaged formulations are obtained by averaging the governing conservation equations within a small time-interval (time average) or a small control volume (spatial average). The governing conservation equations for the multidimensional, multi-fluid, homogeneous, mixture and separated models are also discussed as well as area-averaged governing conservation equations for one-dimensional flows.

Supplementary material


  1. ANSYS fluent theory guide. (2017). ANSYS, Inc.Google Scholar
  2. Avedisian, C. T. (1997). Soot formation in spherically symmetric droplet combustion. In I. Irvin Glassman, F. L. Dryer, & R. F. Sawyer (eds) Physical and chemical aspects of combustion (pp. 135–160). Gordon and Breach Publishers.Google Scholar
  3. Avedisian, C. T. (2000). Recent advances in soot formation from spherical droplet flames at atmospheric pressure. Journal of Propulsion and Power, 16, 628–656.CrossRefGoogle Scholar
  4. Bejan, A. (2013). Convection heat transfer (4th ed.). New York: Wiley.CrossRefGoogle Scholar
  5. Bergman, T. L., & Lavine, A. S. (2017). Fundamentals of heat and mass transfer (8th ed.). New York: Wiley.Google Scholar
  6. Boysan, F. (1990). A two-fluid model for fluent. Sheffield, England: Flow Simulation Consultants Ltd.Google Scholar
  7. Edwards, D. K., Denny, V. E., & Mills, A. F. (1979). Transfer process. New York: Hemisphere.Google Scholar
  8. Faghri, A. (2016). Heat pipe science and technology (2nd ed.). Columbia, MO: Global Digital Press.Google Scholar
  9. Faghri, A., Zhang, Y., & Howell, J. R. (2010). Advanced heat and mass transfer. Columbia, MO: Global Digital Press.Google Scholar
  10. Hewitt, G. F. (1998). “Multiphase fluid flow and pressure drop”, heat exchanger design handbook (Vol. 2). New York, NY: Begell House.Google Scholar
  11. Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1966). Molecular theory of gases and liquids. New York: Wiley.zbMATHGoogle Scholar
  12. Kays, W. M., Crawford, M. E., & Weigand, B. (2004). Convective heat transfer (4th ed.). New York, NY: McGraw-Hill.Google Scholar
  13. Kleijn, C. R. (1991). A mathematical model of the hydrodynamics and gas phase reaction in silicon LPCVD in a single wafer reactor. Journal of the Electrochemical Society, 138, 2190–2200.CrossRefGoogle Scholar
  14. Lock, G. S. H. (1994). Latent heat transfer. Oxford University, Oxford, UK: Oxford Science Publications.Google Scholar
  15. Mahajan, R. L. (1996). Transport phenomena in chemical vapor-deposition systems. In Advances in heat transfer. Academic Press, San Diego, CA.Google Scholar
  16. Manninen, M., Taivassalo, V., & Kallio, S. (1996). On the mixture model for multiphase flow. VTT Publications 288, Technical Research Centre of Finland.Google Scholar
  17. Schiller, L., & Naumann, A. (1935). A drag coefficient correlation. Zeitschrift des Vereins Deutscher Ingenieure, 77, 318–320.Google Scholar
  18. Welty, J. R., Rorrer, G. L., & Foster, D. G. (2014). Fundamentals of momentum, heat and mass transfer (6th ed.). New York, NY: Wiley.Google Scholar
  19. White, F. M. (2005). Viscous fluid flow (3rd ed.). New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations