Fluid-Particle Flow and Heat Transfer

  • Amir FaghriEmail author
  • Yuwen Zhang


This chapter starts with a discussion about size dristributions of particles and interaction of dry particles, followed by a discussion of fluid-particle interactions. This chapter also covers the fundamentals and applications of various liquid-particle and gas-particle systems.

Supplementary material


  1. Abrahamsen, A. R., & Geldart, D. (1980). Behaviour of gas fluidized beds of fine powders. Powder Technology, 26, 35–46.CrossRefGoogle Scholar
  2. Afrin, N., Mao, Y., Zhang, Y., Chen, J. K., Ritter, R., Lampson, A., et al. (2016). Multicomponent gas-particle flow and heat/mass transfer induced by a localized laser irradiation on a urethane-coated stainless steel substrate. Frontiers in Heat and Mass Transfer, 7, 7.Google Scholar
  3. Agu, C. E., Tokheim, L. A., Eikeland, M., & Moldestad, B. M. E. (2017). Determination of onset of bubbling and slugging in a fluidized bed using a dual-plane electrical capacitance tomography system. Chemical Engineering Journal, 328, 997–1008.CrossRefGoogle Scholar
  4. Angayarkanni, S. A., & Philip, J. (2015). Review on thermal properties of nanofluids: Recent developments. Advances in Colloid and Interface Science, 225, 146–176.CrossRefGoogle Scholar
  5. ANSYS Fluent Theory Guide. ANSYS, Inc., 2017.Google Scholar
  6. Baeyens, J. (1973). Heat transfer in gas fluidized beds (Ph.D. Thesis) University of Bradford.Google Scholar
  7. Bird, R. B., Dai, G. C., & Yarusso, B. L. (1983). The rheology and flow of viscoplastic materials. Reviews in Chemical Engineering, 1, 1–70.CrossRefGoogle Scholar
  8. Borodulya, V. A., Teplitsky, A. P., Sorokin, V. V., Markevich, I. I., Hassan, A. F., & Yeryomenko, T. P. (1991). Heat transfer between a surface and a fluidized bed: Consideration of pressure and temperature effects. International Journal of Heat and Mass Transfer, 34, 47–53.CrossRefGoogle Scholar
  9. Buckingham, E. (1921). On plastic flow through capillary tubes. ASTM Proceedings, 21, 1154–1156.Google Scholar
  10. Buongiorno, J., Venerus, D. C., & Zhou, S.-Q. (2009). A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106, 094312.CrossRefGoogle Scholar
  11. Chen, J. C. (2003). Heat transfer. In W.C. Yang, (Ed.), Handbook of fluidization and fluid-particle systems. New York: Marcel Dekker, Inc.Google Scholar
  12. Chen, J. C., Grace, J. R., & Golriz, (2005). Heat transfer in fluidized beds: Design methods. Powder Technology, 150, 123–132.CrossRefGoogle Scholar
  13. Choi, S. U. S. (2009). Nanofluids: From vision to reality through research. Journal of Heat Transfer, 131(3), 033106.CrossRefGoogle Scholar
  14. Chong, Y. O., & Leung, L. S. (1986). Comparison of choking velocity correlations in vertical pneumatic conveying. Powder Technology, 47, 43–50.CrossRefGoogle Scholar
  15. Churchill, S. W. (1977). Friction-factor equation spans all fluid-flow regimes. Chemical Engineering, 7, 91–92.Google Scholar
  16. Crowe, C. T., Schwartzkopf, J. D., Sommerfield, M., & Tsuji, T. (2012). Multiphase flows with droplets and particles (2nd ed.). Boca Raton: CRC Press.Google Scholar
  17. Darby, R., & Melson, J. (1981). How to predict the friction factor for the flow of bingham plastics. Chemical Engineering, 88, 59–61.Google Scholar
  18. Darby, R., Mun, R., & Boger, V. (1992). Prediction Friction Loss in Slurry Pipes. Chemical Engineering, September, 116–119.Google Scholar
  19. Dintawa, E., Tijskens, E., & Ramon, H. (2008). On the accuracy of the hertz model to describe the normal contact of soft elastic spheres. Granular Matter, 10, 209–221.CrossRefGoogle Scholar
  20. Doron, P., & Barnea, (1996). Flow pattern maps for solid-liquid flow in pipes. International Journal of Multiphase Flow, 22(2), 273–283.CrossRefGoogle Scholar
  21. Dou, X., Mao, Y., & Zhang, Y. (2014). Effects of contact force model and size distribution on microsized granular packing. Journal of Manufacturing Science and Engineering, 136(2), 021003.CrossRefGoogle Scholar
  22. Ellis, N., Bi, H. T., Lim, C. J., & Grace, J. R. (2004). Hydrodynamics of turbulent fluidized beds of different diameters. Powder Technology, 141, 124–136.CrossRefGoogle Scholar
  23. Francesco, P. D. M., & Alberto, D. R. (2004). Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model. Chemical Engineering Science, 59, 3461–3475.CrossRefGoogle Scholar
  24. Gao, X., Lu, W., Lu, H., Gong, X., Xie, K., Liu, H., et al. (2013). Pressure drop prediction for horizontal dense-phase pneumatic conveying of pulverized coal associated with feeding to gasifier. Chemical Engineering Research and Design, 91(12), 2509–2514.CrossRefGoogle Scholar
  25. Geldart, D. (1986). Gas fluidization technology. New York: Wiley.Google Scholar
  26. Guo, L. J. (2002). Two-phase and multiphase flow dynamics. Xi’an, China: Xi’an Jiaotong Press. (in Chinese).Google Scholar
  27. Haider, A., & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology, 58, 63–70.CrossRefGoogle Scholar
  28. Jia, T., Zhang, Y., Chen, J. K., & He, Y. L. (2012). Dynamic simulation of granular packing of fine cohesive particles with different size distributions. Powder Technology, 218, 76–85.CrossRefGoogle Scholar
  29. Jodrey, W. S., & Tory, E. M. (1981). Computer simulation of isotropic, homogeneous, dense random packing of equal spheres. Powder Technology, 30, 111–118.CrossRefGoogle Scholar
  30. Jodrey, W. S., & Tory, E. M. (1985). Computer simulation of close random packing of equal spheres. Physical Review A, 32, 2347–2351.CrossRefGoogle Scholar
  31. Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 324(1558), 301–313.CrossRefGoogle Scholar
  32. Jones, M. G., & Williams, K. C. (2003). Solids friction factors for fluidized dense-phase conveying. Particulate Science and Technology, 21(1), 45–56.CrossRefGoogle Scholar
  33. Kang, H., Zhang, Y., Yang, M., & Li, L. (2012). Nonequilibrium molecular dynamics simulation of coupling between nanoparticles and base-fluid in a nanofluid. Physics Letters A, 376(4), 521–524.CrossRefGoogle Scholar
  34. Kaviany, M. (2013). Principles of heat transfer in porous media (2nd ed.). New York: Springer Verlag.zbMATHGoogle Scholar
  35. Kim, S. W., Kirbas, G., Bi, H., Lim, C. J., & Grace, J. R. (2004). Flow behavior and regime transition in a high-density circulating fluidized. Chemical Engineering Science, 59, 3955–3963.CrossRefGoogle Scholar
  36. Kloss, C., Goniva, C., Hager, A., Amberger, S., & Pirker, S. (2012). Models, algorithms and validation for OpenSource DEM and CFD-DEM. Progress in Computational Fluid Dynamics, 12(2), 140–152.MathSciNetCrossRefGoogle Scholar
  37. Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6, 577–588.CrossRefGoogle Scholar
  38. Koo, J., & Kleinstreuer, C. (2005). Laminar nanofluid flow in micro heat-sinks. International Journal of Heat and Mass Transfer, 48, 2652–2661.CrossRefGoogle Scholar
  39. Li, J., & Mason, D. J. (2000). A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technology, 112(3), 273–282.CrossRefGoogle Scholar
  40. Luckos, A., & Koekemoer, A. (2014). On the sphericity of coal and char particles. South African Journal of Chemical Engineering, 19(3), 62–71.Google Scholar
  41. Matsumoto, S., Kikuta, M., & Maeda, S. (1977). Effect of particle size on the minimum transport velocity for horizontal pneumatic conveying of solids. Journal of Chemical Engineering of Japan, 10(2), 273–279.CrossRefGoogle Scholar
  42. Michaelides, E., Crowe, C. T., & Schwarzkopf, J. D. (2016). Multiphase flow handbook (2nd ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar
  43. Mohammadian, S. K., Seyf, H. R., & Zhang, Y. (2014). Performance augmentation and optimization of aluminum oxide-water nanofluid flow in a two-fluid microchannel heat exchanger. Journal of Heat Transfer, 136(2), 021701.CrossRefGoogle Scholar
  44. Moscinski, J., Bargie, M., Rycerz, Z. A., & Jacobs, P. W. M. (1989). The force-biased algorithm for the irregular close packing of equal hard spheres. Molecular Simulation, 3, 201–212.CrossRefGoogle Scholar
  45. Newitt, D. M., Richardson, J. F., Abbott, M., & Turtle, R. B. (1955). Hydraulic conveying of solids in horizontal pipes. Transactions. Institute of Chemical Engineers, 33, 93–113.Google Scholar
  46. Ounis, H., Ahmadi, G., & McLaughlin, J. B. (1991). Brownian diffusion of submicrometer particles in the viscous sublayer. Journal of Colloid and Interface Science, 143(1), 266–277.CrossRefGoogle Scholar
  47. Perales, J. F., Coll, T., Llop, M. F., Puigjaner, L., Arnaldos, J., & Casal, J. (1991). On the transition from bubbling to fast fluidization regimes. In P. Basu, M. Hasatani, & M. Horio (Eds.), Circulating Fluidized bed technology III (pp. 73–78). Pergamon Press, Oxford.Google Scholar
  48. Petrucci, R. H., Harwood, W. S., Herring, G. E. Madura, J. (2006). General chemistry: Principles and modern application (9th edn). Prentice Hall.Google Scholar
  49. Plasynski, S. I., Klingzing, G. E., & Mathur, M. P. (1994). High-pressure vertical pneumatic transport investigation. Powder Technology, 79, 95–109.CrossRefGoogle Scholar
  50. Remond, S. (2010). DEM simulation of small particles clogging in the packing of large beads. Physica A, 389, 4485–4496.CrossRefGoogle Scholar
  51. Rizk, F. (1976). Pneumatic conveying at optimal operating conditions and a solution of Barth’s equation. In Proceedings of the BHRA Fluid Engineering (PNEUMOTRANSPORT 3), Cranfield, U.K., Paper D4.Google Scholar
  52. Sabbah, R., Seyed-Yagoobi, J., & Al-Hallaj, S. (2011). Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: Numerical study. Journal of Heat Transfer, 133(12), 121702–121710.CrossRefGoogle Scholar
  53. Scott, G. D., & Kilgour, D. M. (1969). The density of random close packing of spheres. Journal of Physics D, 2, 863–866.CrossRefGoogle Scholar
  54. Seyf, H. R., Wilson, M., Zhang, Y., & Ma, H. B. (2014). Flow and heat transfer of nanoencapsulated phase change material slurry past a unconfined square cylinder. Journal of Heat Transfer, 136(5), 051902.CrossRefGoogle Scholar
  55. Shi, Y., & Zhang, Y. (2008). Simulation of random packing of spherical particles with different size distributions. Applied Physics A-Mater, 92(3), 621–626.CrossRefGoogle Scholar
  56. Swamee, P. K., & Aggarwal, N. (2011a). Explicit equations for laminar flow of herschel-bulkley fluids. Canadian Journal of Chemical Engineering, 89, 1426–1433.CrossRefGoogle Scholar
  57. Swamee, P. K., & Aggarwal, N. (2011b). Explicit equations for laminar flow of bingham plastic fluids. Journal of Petroleum Science and Engineering, 76(3–4), 178–184.CrossRefGoogle Scholar
  58. Tayeb, R., Dou, X., Mao, Y., & Zhang, Y. (2016a). Analysis of cohesive micro-sized particle packing structure using history-dependent contact models. Journal of Manufacturing Science and Engineering, 138(4), 041005.CrossRefGoogle Scholar
  59. Tayeb, R., Mao, Y., & Zhang, Y., (2016b) Numerical Investigation of evaporation induced self-assembly of sub-micron particles suspended in water, In ASME 2016 5th Micro/Nanoscale Heat & Mass Transfer International Conference, Biopolis, Singapore, January 4–6, 2016.Google Scholar
  60. Thomas, D. G. (1965). Transport characteristics of suspensions: VIII. A note on the viscosity of newtonian suspensions of uniform spherical particles. Journal of Colloid Science, 20, 267–277.CrossRefGoogle Scholar
  61. Tibor, G. J., & Fritz, E. (2005). Three-dimensional discrete element simulations in hoppers and silos. Powder Technology, 158, 58–68.CrossRefGoogle Scholar
  62. Todes, O. M. (1965). Applications of fluidized beds in the industry, part 11(4). Leningrad: Znanie.Google Scholar
  63. Tory, E. M., Church, B. H., Tam, M. K., & Ratner, M. (1973). Simulated random packing of equal spheres. Canadian Journal of Chemical Engineering, 51, 484–493.CrossRefGoogle Scholar
  64. Visscher, W. M., & Bolsterli, M. (1972). Random packing of equal and unequal spheres in two and three dimensions. Nature, 329, 504–507.CrossRefGoogle Scholar
  65. Wasp, E. L., Kenny, J. P., & Gandhi, R. L. (1977). Solid liquid flow–slurry pipeline transportation (1st ed.). Clausthal, Germany: Trans-Tech Publications.Google Scholar
  66. Weber, M. (1982). Correlation analyses in the design of pneumatic transport plant. Bulk Solids Handling, 2, 231–233.Google Scholar
  67. Weber, M. (1991). Friction of the air and the air/solid mixture in pneumatic conveying. Bulk Solids Handling, 11, 99–102.Google Scholar
  68. Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlations of nanofluids. International Journal of Heat and Mass Transfer, 43, 3701–3707.CrossRefGoogle Scholar
  69. Yeoh, G. H., & Tu, J. (Eds.). (2009). Computational techniques for multiphase flows. Burlington, MA: Elsevier.Google Scholar
  70. Yousifi, Y., & Gau, G. (1974). Aerodynamique de l’ecoulement vertical de suspensions concentrees gaz-solides—l. Regimes d’ecoulement et stabilite aerodynamique. Chemical Engineering Science, 29(9), 1939–1946.CrossRefGoogle Scholar
  71. Zabrodsky, S. S. (1966). Hydrodynamics and heat transfer in fluidized beds. Cambridge, Massachusetts: MIT Press.zbMATHGoogle Scholar
  72. Zhang, Y., & Ma, H. B. (2008). Nonequilibrium heat conduction in a nanofluid layer with periodic heat flux. International Journal of Heat and Mass Transfer, 51, 4862–4874.CrossRefGoogle Scholar
  73. Zhou, Y. C., Wright, B. D., Yang, R. Y., Xu, B. H., & Yu, A. B. (1999). Rolling friction in the dynamic simulation of sandpile formation. Physica A-Statistical Mechanics and Its Applications, 269(2), 536–553.CrossRefGoogle Scholar
  74. Zhou, J., Zhang, Y., & Chen, J. K. (2009). Numerical simulation of random packing of spherical particles for powder-based additive manufacturing. Journal of Manufacturing Science and Engineering, 131(3), 031004.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations