Fundamentals of Multiphase Heat Transfer and Flow pp 623-686 | Cite as

# Fluid-Particle Flow and Heat Transfer

Chapter

First Online:

## Abstract

This chapter starts with a discussion about size dristributions of particles and interaction of dry particles, followed by a discussion of fluid-particle interactions. This chapter also covers the fundamentals and applications of various liquid-particle and gas-particle systems.

## Supplementary material

## References

- Abrahamsen, A. R., & Geldart, D. (1980). Behaviour of gas fluidized beds of fine powders.
*Powder Technology,**26,*35–46.CrossRefGoogle Scholar - Afrin, N., Mao, Y., Zhang, Y., Chen, J. K., Ritter, R., Lampson, A., et al. (2016). Multicomponent gas-particle flow and heat/mass transfer induced by a localized laser irradiation on a urethane-coated stainless steel substrate.
*Frontiers in Heat and Mass Transfer,**7,*7.Google Scholar - Agu, C. E., Tokheim, L. A., Eikeland, M., & Moldestad, B. M. E. (2017). Determination of onset of bubbling and slugging in a fluidized bed using a dual-plane electrical capacitance tomography system.
*Chemical Engineering Journal,**328,*997–1008.CrossRefGoogle Scholar - Angayarkanni, S. A., & Philip, J. (2015). Review on thermal properties of nanofluids: Recent developments.
*Advances in Colloid and Interface Science,**225,*146–176.CrossRefGoogle Scholar *ANSYS Fluent Theory Guide*. ANSYS, Inc., 2017.Google Scholar- Baeyens, J. (1973).
*Heat transfer in gas fluidized beds*(Ph.D. Thesis) University of Bradford.Google Scholar - Bird, R. B., Dai, G. C., & Yarusso, B. L. (1983). The rheology and flow of viscoplastic materials.
*Reviews in Chemical Engineering,**1,*1–70.CrossRefGoogle Scholar - Borodulya, V. A., Teplitsky, A. P., Sorokin, V. V., Markevich, I. I., Hassan, A. F., & Yeryomenko, T. P. (1991). Heat transfer between a surface and a fluidized bed: Consideration of pressure and temperature effects.
*International Journal of Heat and Mass Transfer,**34,*47–53.CrossRefGoogle Scholar - Buckingham, E. (1921). On plastic flow through capillary tubes.
*ASTM Proceedings,**21,*1154–1156.Google Scholar - Buongiorno, J., Venerus, D. C., & Zhou, S.-Q. (2009). A benchmark study on the thermal conductivity of nanofluids.
*Journal of Applied Physics,**106,*094312.CrossRefGoogle Scholar - Chen, J. C. (2003). Heat transfer. In W.C. Yang, (Ed.),
*Handbook of fluidization and fluid-particle systems*. New York: Marcel Dekker, Inc.Google Scholar - Chen, J. C., Grace, J. R., & Golriz, (2005). Heat transfer in fluidized beds: Design methods.
*Powder Technology,**150,*123–132.CrossRefGoogle Scholar - Choi, S. U. S. (2009). Nanofluids: From vision to reality through research.
*Journal of Heat Transfer,**131*(3), 033106.CrossRefGoogle Scholar - Chong, Y. O., & Leung, L. S. (1986). Comparison of choking velocity correlations in vertical pneumatic conveying.
*Powder Technology,**47,*43–50.CrossRefGoogle Scholar - Churchill, S. W. (1977). Friction-factor equation spans all fluid-flow regimes.
*Chemical Engineering,**7,*91–92.Google Scholar - Crowe, C. T., Schwartzkopf, J. D., Sommerfield, M., & Tsuji, T. (2012).
*Multiphase flows with droplets and particles*(2nd ed.). Boca Raton: CRC Press.Google Scholar - Darby, R., & Melson, J. (1981). How to predict the friction factor for the flow of bingham plastics.
*Chemical Engineering,**88,*59–61.Google Scholar - Darby, R., Mun, R., & Boger, V. (1992). Prediction Friction Loss in Slurry Pipes.
*Chemical Engineering*, September, 116–119.Google Scholar - Dintawa, E., Tijskens, E., & Ramon, H. (2008). On the accuracy of the hertz model to describe the normal contact of soft elastic spheres.
*Granular Matter,**10,*209–221.CrossRefGoogle Scholar - Doron, P., & Barnea, (1996). Flow pattern maps for solid-liquid flow in pipes.
*International Journal of Multiphase Flow,**22*(2), 273–283.CrossRefGoogle Scholar - Dou, X., Mao, Y., & Zhang, Y. (2014). Effects of contact force model and size distribution on microsized granular packing.
*Journal of Manufacturing Science and Engineering,**136*(2), 021003.CrossRefGoogle Scholar - Ellis, N., Bi, H. T., Lim, C. J., & Grace, J. R. (2004). Hydrodynamics of turbulent fluidized beds of different diameters.
*Powder Technology,**141,*124–136.CrossRefGoogle Scholar - Francesco, P. D. M., & Alberto, D. R. (2004). Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model.
*Chemical Engineering Science,**59,*3461–3475.CrossRefGoogle Scholar - Gao, X., Lu, W., Lu, H., Gong, X., Xie, K., Liu, H., et al. (2013). Pressure drop prediction for horizontal dense-phase pneumatic conveying of pulverized coal associated with feeding to gasifier.
*Chemical Engineering Research and Design,**91*(12), 2509–2514.CrossRefGoogle Scholar - Geldart, D. (1986).
*Gas fluidization technology*. New York: Wiley.Google Scholar - Guo, L. J. (2002).
*Two-phase and multiphase flow dynamics*. Xi’an, China: Xi’an Jiaotong Press. (in Chinese).Google Scholar - Haider, A., & Levenspiel, O. (1989). Drag coefficient and terminal velocity of spherical and nonspherical particles.
*Powder Technology,**58,*63–70.CrossRefGoogle Scholar - Jia, T., Zhang, Y., Chen, J. K., & He, Y. L. (2012). Dynamic simulation of granular packing of fine cohesive particles with different size distributions.
*Powder Technology,**218,*76–85.CrossRefGoogle Scholar - Jodrey, W. S., & Tory, E. M. (1981). Computer simulation of isotropic, homogeneous, dense random packing of equal spheres.
*Powder Technology,**30,*111–118.CrossRefGoogle Scholar - Jodrey, W. S., & Tory, E. M. (1985). Computer simulation of close random packing of equal spheres.
*Physical Review A,**32,*2347–2351.CrossRefGoogle Scholar - Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and the contact of elastic solids.
*Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences,**324*(1558), 301–313.CrossRefGoogle Scholar - Jones, M. G., & Williams, K. C. (2003). Solids friction factors for fluidized dense-phase conveying.
*Particulate Science and Technology,**21*(1), 45–56.CrossRefGoogle Scholar - Kang, H., Zhang, Y., Yang, M., & Li, L. (2012). Nonequilibrium molecular dynamics simulation of coupling between nanoparticles and base-fluid in a nanofluid.
*Physics Letters A,**376*(4), 521–524.CrossRefGoogle Scholar - Kaviany, M. (2013).
*Principles of heat transfer in porous media*(2nd ed.). New York: Springer Verlag.zbMATHGoogle Scholar - Kim, S. W., Kirbas, G., Bi, H., Lim, C. J., & Grace, J. R. (2004). Flow behavior and regime transition in a high-density circulating fluidized.
*Chemical Engineering Science,**59,*3955–3963.CrossRefGoogle Scholar - Kloss, C., Goniva, C., Hager, A., Amberger, S., & Pirker, S. (2012). Models, algorithms and validation for OpenSource DEM and CFD-DEM.
*Progress in Computational Fluid Dynamics,**12*(2), 140–152.MathSciNetCrossRefGoogle Scholar - Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids.
*Journal of Nanoparticle Research,**6,*577–588.CrossRefGoogle Scholar - Koo, J., & Kleinstreuer, C. (2005). Laminar nanofluid flow in micro heat-sinks.
*International Journal of Heat and Mass Transfer,**48,*2652–2661.CrossRefGoogle Scholar - Li, J., & Mason, D. J. (2000). A computational investigation of transient heat transfer in pneumatic transport of granular particles.
*Powder Technology,**112*(3), 273–282.CrossRefGoogle Scholar - Luckos, A., & Koekemoer, A. (2014). On the sphericity of coal and char particles.
*South African Journal of Chemical Engineering,**19*(3), 62–71.Google Scholar - Matsumoto, S., Kikuta, M., & Maeda, S. (1977). Effect of particle size on the minimum transport velocity for horizontal pneumatic conveying of solids.
*Journal of Chemical Engineering of Japan,**10*(2), 273–279.CrossRefGoogle Scholar - Michaelides, E., Crowe, C. T., & Schwarzkopf, J. D. (2016).
*Multiphase flow handbook*(2nd ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar - Mohammadian, S. K., Seyf, H. R., & Zhang, Y. (2014). Performance augmentation and optimization of aluminum oxide-water nanofluid flow in a two-fluid microchannel heat exchanger.
*Journal of Heat Transfer,**136*(2), 021701.CrossRefGoogle Scholar - Moscinski, J., Bargie, M., Rycerz, Z. A., & Jacobs, P. W. M. (1989). The force-biased algorithm for the irregular close packing of equal hard spheres.
*Molecular Simulation,**3,*201–212.CrossRefGoogle Scholar - Newitt, D. M., Richardson, J. F., Abbott, M., & Turtle, R. B. (1955). Hydraulic conveying of solids in horizontal pipes.
*Transactions. Institute of Chemical Engineers,**33,*93–113.Google Scholar - Ounis, H., Ahmadi, G., & McLaughlin, J. B. (1991). Brownian diffusion of submicrometer particles in the viscous sublayer.
*Journal of Colloid and Interface Science,**143*(1), 266–277.CrossRefGoogle Scholar - Perales, J. F., Coll, T., Llop, M. F., Puigjaner, L., Arnaldos, J., & Casal, J. (1991). On the transition from bubbling to fast fluidization regimes. In P. Basu, M. Hasatani, & M. Horio (Eds.),
*Circulating Fluidized bed technology III*(pp. 73–78). Pergamon Press, Oxford.Google Scholar - Petrucci, R. H., Harwood, W. S., Herring, G. E. Madura, J. (2006).
*General chemistry: Principles and modern application*(9th edn). Prentice Hall.Google Scholar - Plasynski, S. I., Klingzing, G. E., & Mathur, M. P. (1994). High-pressure vertical pneumatic transport investigation.
*Powder Technology,**79,*95–109.CrossRefGoogle Scholar - Remond, S. (2010). DEM simulation of small particles clogging in the packing of large beads.
*Physica A,**389,*4485–4496.CrossRefGoogle Scholar - Rizk, F. (1976). Pneumatic conveying at optimal operating conditions and a solution of Barth’s equation. In
*Proceedings of the BHRA Fluid Engineering (PNEUMOTRANSPORT 3)*, Cranfield, U.K., Paper D4.Google Scholar - Sabbah, R., Seyed-Yagoobi, J., & Al-Hallaj, S. (2011). Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: Numerical study.
*Journal of Heat Transfer,**133*(12), 121702–121710.CrossRefGoogle Scholar - Scott, G. D., & Kilgour, D. M. (1969). The density of random close packing of spheres.
*Journal of Physics D,**2,*863–866.CrossRefGoogle Scholar - Seyf, H. R., Wilson, M., Zhang, Y., & Ma, H. B. (2014). Flow and heat transfer of nanoencapsulated phase change material slurry past a unconfined square cylinder.
*Journal of Heat Transfer,**136*(5), 051902.CrossRefGoogle Scholar - Shi, Y., & Zhang, Y. (2008). Simulation of random packing of spherical particles with different size distributions.
*Applied Physics A-Mater,**92*(3), 621–626.CrossRefGoogle Scholar - Swamee, P. K., & Aggarwal, N. (2011a). Explicit equations for laminar flow of herschel-bulkley fluids.
*Canadian Journal of Chemical Engineering,**89,*1426–1433.CrossRefGoogle Scholar - Swamee, P. K., & Aggarwal, N. (2011b). Explicit equations for laminar flow of bingham plastic fluids.
*Journal of Petroleum Science and Engineering,**76*(3–4), 178–184.CrossRefGoogle Scholar - Tayeb, R., Dou, X., Mao, Y., & Zhang, Y. (2016a). Analysis of cohesive micro-sized particle packing structure using history-dependent contact models.
*Journal of Manufacturing Science and Engineering,**138*(4), 041005.CrossRefGoogle Scholar - Tayeb, R., Mao, Y., & Zhang, Y., (2016b) Numerical Investigation of evaporation induced self-assembly of sub-micron particles suspended in water, In
*ASME 2016 5*th*Micro/Nanoscale Heat & Mass Transfer International Conference*, Biopolis, Singapore, January 4–6, 2016.Google Scholar - Thomas, D. G. (1965). Transport characteristics of suspensions: VIII. A note on the viscosity of newtonian suspensions of uniform spherical particles.
*Journal of Colloid Science,**20,*267–277.CrossRefGoogle Scholar - Tibor, G. J., & Fritz, E. (2005). Three-dimensional discrete element simulations in hoppers and silos.
*Powder Technology,**158,*58–68.CrossRefGoogle Scholar - Todes, O. M. (1965).
*Applications of fluidized beds in the industry, part 11(4)*. Leningrad: Znanie.Google Scholar - Tory, E. M., Church, B. H., Tam, M. K., & Ratner, M. (1973). Simulated random packing of equal spheres.
*Canadian Journal of Chemical Engineering,**51,*484–493.CrossRefGoogle Scholar - Visscher, W. M., & Bolsterli, M. (1972). Random packing of equal and unequal spheres in two and three dimensions.
*Nature,**329,*504–507.CrossRefGoogle Scholar - Wasp, E. L., Kenny, J. P., & Gandhi, R. L. (1977).
*Solid liquid flow–slurry pipeline transportation*(1st ed.). Clausthal, Germany: Trans-Tech Publications.Google Scholar - Weber, M. (1982). Correlation analyses in the design of pneumatic transport plant.
*Bulk Solids Handling,**2,*231–233.Google Scholar - Weber, M. (1991). Friction of the air and the air/solid mixture in pneumatic conveying.
*Bulk Solids Handling,**11,*99–102.Google Scholar - Xuan, Y., & Roetzel, W. (2000). Conceptions for heat transfer correlations of nanofluids.
*International Journal of Heat and Mass Transfer,**43,*3701–3707.CrossRefGoogle Scholar - Yeoh, G. H., & Tu, J. (Eds.). (2009).
*Computational techniques for multiphase flows*. Burlington, MA: Elsevier.Google Scholar - Yousifi, Y., & Gau, G. (1974). Aerodynamique de l’ecoulement vertical de suspensions concentrees gaz-solides—l. Regimes d’ecoulement et stabilite aerodynamique.
*Chemical Engineering Science,**29*(9), 1939–1946.CrossRefGoogle Scholar - Zabrodsky, S. S. (1966).
*Hydrodynamics and heat transfer in fluidized beds*. Cambridge, Massachusetts: MIT Press.zbMATHGoogle Scholar - Zhang, Y., & Ma, H. B. (2008). Nonequilibrium heat conduction in a nanofluid layer with periodic heat flux.
*International Journal of Heat and Mass Transfer,**51,*4862–4874.CrossRefGoogle Scholar - Zhou, Y. C., Wright, B. D., Yang, R. Y., Xu, B. H., & Yu, A. B. (1999). Rolling friction in the dynamic simulation of sandpile formation.
*Physica A-Statistical Mechanics and Its Applications,**269*(2), 536–553.CrossRefGoogle Scholar - Zhou, J., Zhang, Y., & Chen, J. K. (2009). Numerical simulation of random packing of spherical particles for powder-based additive manufacturing.
*Journal of Manufacturing Science and Engineering,**131*(3), 031004.CrossRefGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2020