Fundamentals of Multiphase Heat Transfer and Flow pp 535-621 | Cite as

# Two-Phase Flow and Heat Transfer

Chapter

First Online:

## Abstract

This chapter starts with definitions of various parameters for two-phase flow and flow patterns in vertical and horizontal tubes. This is followed by two-phase flow models as well as prediction of pressure drops and void fractions. Finally, the two-phase flow regimes and heat transfer characteristics for forced convective condensation and boiling at both macro- and microscale levels are presented.

## Supplementary material

## References

- Awad, M. M., & Muzychka, Y. S. (2005a). Bounds on two-phase flow: Part I fractional pressure gradient in circular tubes. In
*Proceedings of International Mechanical Engineering Congress and Exposition*, Orlando, FL (DVD).Google Scholar - Awad, M. M., & Muzychka, Y. S. (2005b). Bounds on two-phase flow: Part II void fraction in circular tubes. In
*Proceedings of International Mechanical Engineering Congress and Exposition*, Orlando, FL (DVD).Google Scholar - Bandel, J. (1973).
*Druckverlust ünd Wärmeübergang bei der Verdampfung siedender Kältemittel im durchströmten waagerechten Rohr*, Doctoral Dissertation, Universität Karlsruhe.Google Scholar - Baroczy, C. J. (1965). Correlation of liquid fraction in two-phase flow with applications to liquid metals.
*Chemical Engineering Progress Symposium Series,**61,*179–191.Google Scholar - Barnea, D., Luninski, Y., & Taitel, Y. (1983). Flow pattern in horizontal and vertical two phase flow in small diameter pipes.
*Canadian Journal of Chemical Engineering,**61,*617–620.CrossRefGoogle Scholar - Beattie, D. R. H., & Whalley, P. B. (1982). A simple two-phase frictional pressure drop calculation method.
*International Journal of Multiphase Flow,**8,*83–87.CrossRefGoogle Scholar - Begg, E., Khrustalev, D., & Faghri, A. (1999). Complete condensation of forced convection two-phase flow in a miniature tube.
*Journal of Heat Transfer,**121,*904–915.CrossRefGoogle Scholar - Bergles, A. E., & Kandlikar, S. G. (2005). On the nature of critical heat flux in microchannels.
*Journal of Heat Transfer,**127,*102–107.CrossRefGoogle Scholar - Bowers, M. B., & Mudawar, I. (1994). High flux boiling in low flow rate, low pressure drop mini-channel and microchannel heat sinks.
*International Journal of Heat and Mass Transfer,**37,*321–332.CrossRefGoogle Scholar - Breber, G., Palen, J. W., & Taborek, J. (1980). Prediction of horizontal tubeside condensation of pure components using flow regime criteria.
*Journal of Heat Transfer,**102,*471–476.CrossRefGoogle Scholar - Butterworth, D. (1975). A comparison of some void-fraction relationships for cocurrent gas-liquid flow.
*International Journal of Multiphase Flow,**1*(6), 845–850.MathSciNetCrossRefGoogle Scholar - Chang, J. S., & Watson, A. (1994). Electromagnetic hydrodynamics.
*IEEE Transactions on Dielectrics and Electrical Insulation,**1,*871–895.CrossRefGoogle Scholar - Chen, J. C. (1963). A correlation for boiling heat transfer to saturated fluids in convective flow. In
*ASME preprint 63-HT-34, Presented at 6th National Heat Transfer Conference,*Boston, MA.Google Scholar - Chen, Y., Groll, M., Mertz, R., & Kulenovic, R. (2003). Force analysis for isolated bubbles growing from smooth and evaporator tubes.
*Transaction of the Institute of Fluid-Flow Machinery,**112,*57–74.Google Scholar - Chisholm, D. (1967). A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow.
*International Journal of Heat and Mass Transfer,**10,*1767–1778.CrossRefGoogle Scholar - Chisholm, D. (1973a). Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels.
*International Journal of Heat and Mass Transfer,**16,*347–348.CrossRefGoogle Scholar - Chisholm, D. (1973b). Void fraction during two-phase flow.
*Journal of Mechanical Engineering Science,**15,*235–236.CrossRefGoogle Scholar - Chung, P. M. Y., & Kawaji, M. (2004). The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels.
*International Journal of Multiphase Flow,**30,*735–761.CrossRefGoogle Scholar - Collier, J. G., & Thome, J. R. (1994).
*Convective boiling and condensation*(3rd ed.). Oxford, UK: Oxford University Press.Google Scholar - Cotton, J., Robinson, A. J., Shoukri, M., & Chang, J. S. (2005). A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis.
*International Journal of Heat and Mass Transfer,**48,*5563–5579.CrossRefGoogle Scholar - Davis, E. J., & Anderson, G. H. (1966). The incipience of nucleate boiling in forced convection flow.
*AIChE Journal,**12,*774–780.CrossRefGoogle Scholar - Dobson, M. K., & Chato, J. C. (1998). Condensation in smooth horizontal tubes.
*Journal of Heat Transfer,**120,*193–213.CrossRefGoogle Scholar - Dupont, V., & Thome, J. R. (2004). Evaporation in microchannels: Influence of the channel diameter on heat transfer.
*Microfluidics and Nanofluidics,**1,*119–127.CrossRefGoogle Scholar - Faghri, A. (2016).
*Heat pipe science and technology*(2nd ed.). Columbia, MO: Global Digital Press.Google Scholar - Feng, Z. P., & Serizawa, A. (1999). Visualization of two-phase flow patterns in an ultra-small tube. In
*Proceedings of the 18th Multiphase Flow Symposium of Japan*(pp. 33–36).Google Scholar - Forster, H. K., & Zuber, N. (1955). Dynamics of vapor bubbles and boiling heat transfer.
*AIChE Journal,**1,*531–535.CrossRefGoogle Scholar - Friedel, L. (1979). Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. In
*European Two-Phase Flow Group Meeting*, Paper E2, Ispra, Italy.Google Scholar - Gersey, C. O., & Mudawar, I. (1993). Orientation effects on critical heat flux from discrete, in-line heat sources in a flow channel.
*Journal of Heat Transfer,**115,*973–985.CrossRefGoogle Scholar - Golan, L. P., & Stenning, A. H. (1969). Two-phase vertical flow maps.
*Proceedings of the Institute of Mechanical Engineers,**184*(3C), 110–116.Google Scholar - Hashizume, K. (1983). Flow pattern, void fraction and pressure drop of refrigerant two-phase flow in a horizontal pipe, Part I: Experimental data.
*International Journal of Multiphase Flow,**9,*399–410.CrossRefGoogle Scholar - Hewitt, G. F. (1998). Multiphase fluid flow and pressure drop. In
*Heat exchanger design handbook*(Vol. 2). New York, NY: Begell House.Google Scholar - Hewitt, G. F., & Roberts, D. N. (1969). Studies of two-phase flow patterns by simultaneous X-ray and flash photography. AERE-M 2159, HMSO.Google Scholar
- Hsu, Y. Y. (1962). On the size range of active nucleation cavities on a heating surface.
*Journal of Heat Transfer,**84,*207–216.CrossRefGoogle Scholar - Jaster, H., & Kosky, P. G. (1976). Condensation heat transfer in a mixed flow regime.
*International Journal of Heat and Mass Transfer,**19,*95–99.CrossRefGoogle Scholar - Kandlikar, S. G. (1990). A general correlation for two-phase flow boiling heat transfer coefficient inside horizontal and vertical tubes.
*Journal of Heat Transfer,**112,*219–228.CrossRefGoogle Scholar - Kandlikar, S. G. (1991). Development of a flow boiling map for subcooled and saturated flow boiling of different fluids in circular tubes.
*Journal of Heat Transfer,**113,*190–200.CrossRefGoogle Scholar - Kattan, N., Thome, J. R., & Favrat, D. (1998a). Flow boiling in horizontal tubes: Part 1—Development of adiabatic two-phase flow pattern map.
*Journal of Heat Transfer,**120,*140–147.CrossRefGoogle Scholar - Kattan, N., Thome, J. R., & Favrat, D. (1998b). Flow boiling in horizontal tubes: Part 2—New heat transfer data for five refrigerants.
*Journal of Heat Transfer,**120,*148–155.CrossRefGoogle Scholar - Kattan, N., Thome, J. R., & Favrat, D. (1998c). Flow boiling in horizontal tubes: Part 3—Heat transfer model based on flow pattern.
*Journal of Heat Transfer,**120,*156–165.CrossRefGoogle Scholar - Katto, Y., & Ohno, H. (1984). An improved version of the generalized correlation of critical heat flux for the forced convection boiling in uniformly heated vertical tubes.
*International Journal of Heat and Mass Transfer,**27,*1641–1648.CrossRefGoogle Scholar - Kawaji, M., & Chung, P. M. Y. (2004). Adiabatic gas-liquid flow in microchannels.
*Microscale Thermophysical Engineering,**8,*239–257.CrossRefGoogle Scholar - Kew, P. A., & Cornwell, K. (1997). Correlations for prediction of boiling heat transfer in small diameter channels.
*Applied Thermal Engineering,**17,*705–715.CrossRefGoogle Scholar - Khrustalev, D., & Faghri, A. (1994). Thermal analysis of a micro heat pipe.
*Journal of Heat Transfer,**116,*189–198.CrossRefGoogle Scholar - Khrustalev, D., & Faghri, A. (1996). High flux evaporative mini-channel heat sink with axial capillary grooves.
*Journal of Enhanced Heat Transfer,**3,*221–232.CrossRefGoogle Scholar - Khrustalev, D., & Faghri, A. (1997). Boiling heat transfer in miniature axially-grooved rectangular channel with discrete heat sources.
*Journal of Enhanced Heat Transfer,**4,*163–174.CrossRefGoogle Scholar - Klausner, J. F., Mei, R., Bernhard, D. M., & Zeng, L. Z. (1993). Vapor bubble departure in forced convection boiling.
*International Journal of Heat and Mass Transfer,**36,*651–662.CrossRefGoogle Scholar - Kocamustafaogullari, G., & Ishii, M. (1983). Interfacial area and nucleation site density in boiling systems.
*International Journal of Heat and Mass Transfer,**26,*1377–1387.CrossRefGoogle Scholar - Koşar, A., Kuo, C. J., & Peles, Y. (2005). Boiling heat transfer in rectangular microchannels with reentrant cavities.
*International Journal of Heat and Mass Transfer,**48,*4867–4886.CrossRefGoogle Scholar - Lazarek, G. M., & Black, S. H. (1982). Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113.
*International Journal of Heat and Mass Transfer,**25,*945–960.CrossRefGoogle Scholar - Liu, D., Lee, P. S., & Garimella, S. V. (2005). Prediction of the onset of nucleate boiling in microchannel flow.
*International Journal of Heat and Mass Transfer,**48,*5134–5149.CrossRefGoogle Scholar - Lockhart, R. W., & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes.
*Chemical Engineering Progress Symposium Series,**45,*39–48.Google Scholar - Maddox, D. E., & Mudawar, I. (1989). Single- and two-phase convective heat transfer from smooth and enhanced microelectronic heat sources in a rectangular channel.
*Journal of Heat Transfer,**111,*1045–1052.CrossRefGoogle Scholar - Mei, R., & Klausner, J. F. (1994). Shear lift force on spherical bubbles.
*International Journal of Heat Fluid Flow,**15,*62–65.CrossRefGoogle Scholar - Moser, K. W., Webb, R. L., & Na, B. (1998). A new equivalent reynolds number model for condensation in smooth tubes.
*Journal of Heat Transfer,**120,*410–417.CrossRefGoogle Scholar - Munoz-Cobol, J. L., Herranz, L., Sancho, J., Takachenko, I., & Verdu, G. (1996). Turbulent vapor condensation with noncondensable gases in vertical tubes.
*International Journal of Heat and Mass Transfer,**39,*3249–3260.CrossRefGoogle Scholar - Plesch, D., Bier, W., Seidel, D., & Schubert, K. (1991). Miniature heat pipes for heat removal from microelectronic circuits. In
*Micromechanical Sensors, Actuators, and Systems*, DSC-32 (pp. 303–313). New York: ASME.Google Scholar - Premoli, A., Francesco, D., & Prina, A. (1971). A dimensionless correlation for determining the density of two-phase mixtures.
*Thermotecnica,**25,*17–26.Google Scholar - Qu, W., & Mudawar, I. (2004). Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks.
*International Journal of Heat and Mass Transfer,**47,*2045–2059.CrossRefGoogle Scholar - Rabas, T. J., & Minard, P. G. (1987). Two types of flow instabilities occurring inside horizontal tubes with complete condensation.
*Heat Transfer Engineering,**8,*40–49.CrossRefGoogle Scholar - Riehl, R. R., & Ochterbeck, J. M. (2002). Experimental investigation of the convective condensation heat transfer in microchannel flows. In
*The 9th Brazilian Congress of Thermal Engineering and Sciences*, Caxambu, MG, Paper CIT02-0495.Google Scholar - Serizawa, A., & Feng, Z. P. (2001). Two-phase flow in micro-channels. In
*Proceedings of the 4th International Conference on Multiphase Flow*, New Orleans, LA.Google Scholar - Serizawa, A., Feng, Z., & Kawara, Z. (2000). Two-phase flow in microchannels.
*Experimental Thermal and Fluid Science,**26,*703–714.CrossRefGoogle Scholar - Shah, M. M. (1979). A general chart correlation for heat transfer during condensation inside pipes.
*International Journal of Heat and Mass Transfer,**22,*547–556.CrossRefGoogle Scholar - Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts. In
*Advances in Heat Transfer*, Suppl. 1. San Diego, CA: Academic Press.Google Scholar - Shin, J. S., & Kim, M. H. (2005). An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels.
*Heat Transfer Engineering,**26,*36–44.CrossRefGoogle Scholar - Situ, R., Hibiki, T., Ishii, M., & Mori, M. (2005). Bubble lift-off size in forced convective subcooled boiling flow.
*International Journal of Heat and Mass Transfer,**48,*5536–5548.CrossRefGoogle Scholar - Soliman, H. M. (1974).
*Analytical and experimental studies of flow patterns during condensation inside horizontal tubes*, Ph.D. Dissertation, Kansas State University, Manhattan, KS.Google Scholar - Tabatabai, A., & Faghri, A. (2001). A new two-phase flow map and transition boundary accounting for surface tension effects in horizontal miniature and micro tubes.
*Journal of Heat Transfer,**123,*958–968.CrossRefGoogle Scholar - Taitel, Y., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow.
*AIChE Journal,**22,*47–55.CrossRefGoogle Scholar - Tandon, T. N., Varma, H. K., & Gupta, C. P. (1982). A new flow regime map for condensation inside horizontal tubes.
*Journal of Heat Transfer,**104,*763–768.CrossRefGoogle Scholar - Teng, H., Cheng, P., & Zhao, T. S. (1999). Instability of condensate film and capillary blocking in small-diameter-thermosyphon condensers.
*International Journal of Heat and Mass Transfer,**42,*3071–3083.CrossRefGoogle Scholar - Thome, J. R. S. (1964). Prediction of pressure drop during forced circulation boiling of water.
*International Journal of Heat and Mass Transfer,**7,*709–724.CrossRefGoogle Scholar - Thome, J. R. (2016).
*The heat transfer engineering data book III*. Ulm: Wieland-Werke AG.Google Scholar - Thome, J. R., Dupont, V., & Jacobi, A. M. (2004). Heat transfer model for evaporation in microchannels. Part I: Presentation of model.
*International Journal of Heat and Mass Transfer,**47,*3375–3385.CrossRefGoogle Scholar - Thome, J. R., & El Hajal, J. (2003). Two-phase flow pattern map for evaporation in horizontal tubes: Latest version.
*Heat Transfer Engineering,**24,*3–10.CrossRefGoogle Scholar - Tran, T. N., Wambsganns, M. W., & France, D. M. (1996). Small circular-and rectangular-channel boiling with two refrigerants.
*International Journal of Multiphase Flow,**22,*485–498.CrossRefGoogle Scholar - Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., & Sadowski, D. L. (1999). Gas-liquid two-phase flow in microchannels—Part I: Two-phase flow pattern.
*International Journal of Multiphase Flow,**25,*377–394.CrossRefGoogle Scholar - Turner, J. M. (1966).
*Annular two-phase flow*. Ph.D. Dissertation, Dartmouth College, Hanover, NH.Google Scholar - Vasiliev, L. L, Grakovich, L. P., & Khrustalev, D. K. (1984). Gravity-assisted heat pipes for solar energy collectors. In
*Proceedings of the 5th International Heat Pipe Conference*(Vol. 3, pp. 19–24). Tsukuba, Japan, Pre-prints.Google Scholar - Vlasie, C., Macchi, H., Guilpart, J., & Agostini, B. (2004). Flow boiling in small diameter channels.
*International Journal of Refrigeration,**27,*191–201.CrossRefGoogle Scholar - Wambsganss, M. W., Jendrzejczyk, J. A., & France, D. M. (1991). Two-phase flow patterns and transitions in a small, horizontal, rectangular channel.
*International Journal of Multiphase Flow,**17,*327–342.CrossRefGoogle Scholar - Wilmarth, T., & Ishii, M. (1994). Two-phase flow regimes in narrow rectangular vertical and horizontal channels.
*International Journal of Heat and Mass Transfer,**37,*1749–1758.CrossRefGoogle Scholar - Yu, W., France, D. M., Wambsgans, M. W., & Hull, J. R. (2002). Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube.
*International Journal of Multiphase Flow,**28,*927–941.CrossRefGoogle Scholar - Zeng, L. Z., Klausner, J. F., Bernhard, D. M., & Mei, R. (1993). A unified model for the prediction of bubble detachment diameters in boiling systems - II. Flow boiling.
*International Journal of Heat and Mass Transfer,**36,*2271–2279.CrossRefGoogle Scholar - Zhang, Y., Faghri, A., & Shafii, M. B. (2001). Capillary blocking in forced convective condensation in horizontal miniature channels.
*Journal of Heat Transfer,**123,*501–511.CrossRefGoogle Scholar - Zivi, S. M. (1964). Estimation of steady-state void fraction by means of the principle of minimum energy production.
*Journal of Heat Transfer,**86,*247–252.CrossRefGoogle Scholar - Zuber, N. (1961). The dynamics of vapor bubbles in nonuniform temperature fields.
*International Journal of Heat and Mass Transfer,**2,*83–98.CrossRefGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2020