Advertisement

Two-Phase Flow and Heat Transfer

  • Amir FaghriEmail author
  • Yuwen Zhang
Chapter

Abstract

This chapter starts with definitions of various parameters for two-phase flow and flow patterns in vertical and horizontal tubes. This is followed by two-phase flow models as well as prediction of pressure drops and void fractions. Finally, the two-phase flow regimes and heat transfer characteristics for forced convective condensation and boiling at both macro- and microscale levels are presented.

Supplementary material

References

  1. Awad, M. M., & Muzychka, Y. S. (2005a). Bounds on two-phase flow: Part I fractional pressure gradient in circular tubes. In Proceedings of International Mechanical Engineering Congress and Exposition, Orlando, FL (DVD).Google Scholar
  2. Awad, M. M., & Muzychka, Y. S. (2005b). Bounds on two-phase flow: Part II void fraction in circular tubes. In Proceedings of International Mechanical Engineering Congress and Exposition, Orlando, FL (DVD).Google Scholar
  3. Bandel, J. (1973). Druckverlust ünd Wärmeübergang bei der Verdampfung siedender Kältemittel im durchströmten waagerechten Rohr, Doctoral Dissertation, Universität Karlsruhe.Google Scholar
  4. Baroczy, C. J. (1965). Correlation of liquid fraction in two-phase flow with applications to liquid metals. Chemical Engineering Progress Symposium Series, 61, 179–191.Google Scholar
  5. Barnea, D., Luninski, Y., & Taitel, Y. (1983). Flow pattern in horizontal and vertical two phase flow in small diameter pipes. Canadian Journal of Chemical Engineering, 61, 617–620.CrossRefGoogle Scholar
  6. Beattie, D. R. H., & Whalley, P. B. (1982). A simple two-phase frictional pressure drop calculation method. International Journal of Multiphase Flow, 8, 83–87.CrossRefGoogle Scholar
  7. Begg, E., Khrustalev, D., & Faghri, A. (1999). Complete condensation of forced convection two-phase flow in a miniature tube. Journal of Heat Transfer, 121, 904–915.CrossRefGoogle Scholar
  8. Bergles, A. E., & Kandlikar, S. G. (2005). On the nature of critical heat flux in microchannels. Journal of Heat Transfer, 127, 102–107.CrossRefGoogle Scholar
  9. Bowers, M. B., & Mudawar, I. (1994). High flux boiling in low flow rate, low pressure drop mini-channel and microchannel heat sinks. International Journal of Heat and Mass Transfer, 37, 321–332.CrossRefGoogle Scholar
  10. Breber, G., Palen, J. W., & Taborek, J. (1980). Prediction of horizontal tubeside condensation of pure components using flow regime criteria. Journal of Heat Transfer, 102, 471–476.CrossRefGoogle Scholar
  11. Butterworth, D. (1975). A comparison of some void-fraction relationships for cocurrent gas-liquid flow. International Journal of Multiphase Flow, 1(6), 845–850.MathSciNetCrossRefGoogle Scholar
  12. Chang, J. S., & Watson, A. (1994). Electromagnetic hydrodynamics. IEEE Transactions on Dielectrics and Electrical Insulation, 1, 871–895.CrossRefGoogle Scholar
  13. Chen, J. C. (1963). A correlation for boiling heat transfer to saturated fluids in convective flow. In ASME preprint 63-HT-34, Presented at 6th National Heat Transfer Conference, Boston, MA.Google Scholar
  14. Chen, Y., Groll, M., Mertz, R., & Kulenovic, R. (2003). Force analysis for isolated bubbles growing from smooth and evaporator tubes. Transaction of the Institute of Fluid-Flow Machinery, 112, 57–74.Google Scholar
  15. Chisholm, D. (1967). A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. International Journal of Heat and Mass Transfer, 10, 1767–1778.CrossRefGoogle Scholar
  16. Chisholm, D. (1973a). Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer, 16, 347–348.CrossRefGoogle Scholar
  17. Chisholm, D. (1973b). Void fraction during two-phase flow. Journal of Mechanical Engineering Science, 15, 235–236.CrossRefGoogle Scholar
  18. Chung, P. M. Y., & Kawaji, M. (2004). The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. International Journal of Multiphase Flow, 30, 735–761.CrossRefGoogle Scholar
  19. Collier, J. G., & Thome, J. R. (1994). Convective boiling and condensation (3rd ed.). Oxford, UK: Oxford University Press.Google Scholar
  20. Cotton, J., Robinson, A. J., Shoukri, M., & Chang, J. S. (2005). A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis. International Journal of Heat and Mass Transfer, 48, 5563–5579.CrossRefGoogle Scholar
  21. Davis, E. J., & Anderson, G. H. (1966). The incipience of nucleate boiling in forced convection flow. AIChE Journal, 12, 774–780.CrossRefGoogle Scholar
  22. Dobson, M. K., & Chato, J. C. (1998). Condensation in smooth horizontal tubes. Journal of Heat Transfer, 120, 193–213.CrossRefGoogle Scholar
  23. Dupont, V., & Thome, J. R. (2004). Evaporation in microchannels: Influence of the channel diameter on heat transfer. Microfluidics and Nanofluidics, 1, 119–127.CrossRefGoogle Scholar
  24. Faghri, A. (2016). Heat pipe science and technology (2nd ed.). Columbia, MO: Global Digital Press.Google Scholar
  25. Feng, Z. P., & Serizawa, A. (1999). Visualization of two-phase flow patterns in an ultra-small tube. In Proceedings of the 18th Multiphase Flow Symposium of Japan (pp. 33–36).Google Scholar
  26. Forster, H. K., & Zuber, N. (1955). Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal, 1, 531–535.CrossRefGoogle Scholar
  27. Friedel, L. (1979). Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. In European Two-Phase Flow Group Meeting, Paper E2, Ispra, Italy.Google Scholar
  28. Gersey, C. O., & Mudawar, I. (1993). Orientation effects on critical heat flux from discrete, in-line heat sources in a flow channel. Journal of Heat Transfer, 115, 973–985.CrossRefGoogle Scholar
  29. Golan, L. P., & Stenning, A. H. (1969). Two-phase vertical flow maps. Proceedings of the Institute of Mechanical Engineers, 184(3C), 110–116.Google Scholar
  30. Hashizume, K. (1983). Flow pattern, void fraction and pressure drop of refrigerant two-phase flow in a horizontal pipe, Part I: Experimental data. International Journal of Multiphase Flow, 9, 399–410.CrossRefGoogle Scholar
  31. Hewitt, G. F. (1998). Multiphase fluid flow and pressure drop. In Heat exchanger design handbook (Vol. 2). New York, NY: Begell House.Google Scholar
  32. Hewitt, G. F., & Roberts, D. N. (1969). Studies of two-phase flow patterns by simultaneous X-ray and flash photography. AERE-M 2159, HMSO.Google Scholar
  33. Hsu, Y. Y. (1962). On the size range of active nucleation cavities on a heating surface. Journal of Heat Transfer, 84, 207–216.CrossRefGoogle Scholar
  34. Jaster, H., & Kosky, P. G. (1976). Condensation heat transfer in a mixed flow regime. International Journal of Heat and Mass Transfer, 19, 95–99.CrossRefGoogle Scholar
  35. Kandlikar, S. G. (1990). A general correlation for two-phase flow boiling heat transfer coefficient inside horizontal and vertical tubes. Journal of Heat Transfer, 112, 219–228.CrossRefGoogle Scholar
  36. Kandlikar, S. G. (1991). Development of a flow boiling map for subcooled and saturated flow boiling of different fluids in circular tubes. Journal of Heat Transfer, 113, 190–200.CrossRefGoogle Scholar
  37. Kattan, N., Thome, J. R., & Favrat, D. (1998a). Flow boiling in horizontal tubes: Part 1—Development of adiabatic two-phase flow pattern map. Journal of Heat Transfer, 120, 140–147.CrossRefGoogle Scholar
  38. Kattan, N., Thome, J. R., & Favrat, D. (1998b). Flow boiling in horizontal tubes: Part 2—New heat transfer data for five refrigerants. Journal of Heat Transfer, 120, 148–155.CrossRefGoogle Scholar
  39. Kattan, N., Thome, J. R., & Favrat, D. (1998c). Flow boiling in horizontal tubes: Part 3—Heat transfer model based on flow pattern. Journal of Heat Transfer, 120, 156–165.CrossRefGoogle Scholar
  40. Katto, Y., & Ohno, H. (1984). An improved version of the generalized correlation of critical heat flux for the forced convection boiling in uniformly heated vertical tubes. International Journal of Heat and Mass Transfer, 27, 1641–1648.CrossRefGoogle Scholar
  41. Kawaji, M., & Chung, P. M. Y. (2004). Adiabatic gas-liquid flow in microchannels. Microscale Thermophysical Engineering, 8, 239–257.CrossRefGoogle Scholar
  42. Kew, P. A., & Cornwell, K. (1997). Correlations for prediction of boiling heat transfer in small diameter channels. Applied Thermal Engineering, 17, 705–715.CrossRefGoogle Scholar
  43. Khrustalev, D., & Faghri, A. (1994). Thermal analysis of a micro heat pipe. Journal of Heat Transfer, 116, 189–198.CrossRefGoogle Scholar
  44. Khrustalev, D., & Faghri, A. (1996). High flux evaporative mini-channel heat sink with axial capillary grooves. Journal of Enhanced Heat Transfer, 3, 221–232.CrossRefGoogle Scholar
  45. Khrustalev, D., & Faghri, A. (1997). Boiling heat transfer in miniature axially-grooved rectangular channel with discrete heat sources. Journal of Enhanced Heat Transfer, 4, 163–174.CrossRefGoogle Scholar
  46. Klausner, J. F., Mei, R., Bernhard, D. M., & Zeng, L. Z. (1993). Vapor bubble departure in forced convection boiling. International Journal of Heat and Mass Transfer, 36, 651–662.CrossRefGoogle Scholar
  47. Kocamustafaogullari, G., & Ishii, M. (1983). Interfacial area and nucleation site density in boiling systems. International Journal of Heat and Mass Transfer, 26, 1377–1387.CrossRefGoogle Scholar
  48. Koşar, A., Kuo, C. J., & Peles, Y. (2005). Boiling heat transfer in rectangular microchannels with reentrant cavities. International Journal of Heat and Mass Transfer, 48, 4867–4886.CrossRefGoogle Scholar
  49. Lazarek, G. M., & Black, S. H. (1982). Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. International Journal of Heat and Mass Transfer, 25, 945–960.CrossRefGoogle Scholar
  50. Liu, D., Lee, P. S., & Garimella, S. V. (2005). Prediction of the onset of nucleate boiling in microchannel flow. International Journal of Heat and Mass Transfer, 48, 5134–5149.CrossRefGoogle Scholar
  51. Lockhart, R. W., & Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chemical Engineering Progress Symposium Series, 45, 39–48.Google Scholar
  52. Maddox, D. E., & Mudawar, I. (1989). Single- and two-phase convective heat transfer from smooth and enhanced microelectronic heat sources in a rectangular channel. Journal of Heat Transfer, 111, 1045–1052.CrossRefGoogle Scholar
  53. Mei, R., & Klausner, J. F. (1994). Shear lift force on spherical bubbles. International Journal of Heat Fluid Flow, 15, 62–65.CrossRefGoogle Scholar
  54. Moser, K. W., Webb, R. L., & Na, B. (1998). A new equivalent reynolds number model for condensation in smooth tubes. Journal of Heat Transfer, 120, 410–417.CrossRefGoogle Scholar
  55. Munoz-Cobol, J. L., Herranz, L., Sancho, J., Takachenko, I., & Verdu, G. (1996). Turbulent vapor condensation with noncondensable gases in vertical tubes. International Journal of Heat and Mass Transfer, 39, 3249–3260.CrossRefGoogle Scholar
  56. Plesch, D., Bier, W., Seidel, D., & Schubert, K. (1991). Miniature heat pipes for heat removal from microelectronic circuits. In Micromechanical Sensors, Actuators, and Systems, DSC-32 (pp. 303–313). New York: ASME.Google Scholar
  57. Premoli, A., Francesco, D., & Prina, A. (1971). A dimensionless correlation for determining the density of two-phase mixtures. Thermotecnica, 25, 17–26.Google Scholar
  58. Qu, W., & Mudawar, I. (2004). Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. International Journal of Heat and Mass Transfer, 47, 2045–2059.CrossRefGoogle Scholar
  59. Rabas, T. J., & Minard, P. G. (1987). Two types of flow instabilities occurring inside horizontal tubes with complete condensation. Heat Transfer Engineering, 8, 40–49.CrossRefGoogle Scholar
  60. Riehl, R. R., & Ochterbeck, J. M. (2002). Experimental investigation of the convective condensation heat transfer in microchannel flows. In The 9th Brazilian Congress of Thermal Engineering and Sciences, Caxambu, MG, Paper CIT02-0495.Google Scholar
  61. Serizawa, A., & Feng, Z. P. (2001). Two-phase flow in micro-channels. In Proceedings of the 4th International Conference on Multiphase Flow, New Orleans, LA.Google Scholar
  62. Serizawa, A., Feng, Z., & Kawara, Z. (2000). Two-phase flow in microchannels. Experimental Thermal and Fluid Science, 26, 703–714.CrossRefGoogle Scholar
  63. Shah, M. M. (1979). A general chart correlation for heat transfer during condensation inside pipes. International Journal of Heat and Mass Transfer, 22, 547–556.CrossRefGoogle Scholar
  64. Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts. In Advances in Heat Transfer, Suppl. 1. San Diego, CA: Academic Press.Google Scholar
  65. Shin, J. S., & Kim, M. H. (2005). An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels. Heat Transfer Engineering, 26, 36–44.CrossRefGoogle Scholar
  66. Situ, R., Hibiki, T., Ishii, M., & Mori, M. (2005). Bubble lift-off size in forced convective subcooled boiling flow. International Journal of Heat and Mass Transfer, 48, 5536–5548.CrossRefGoogle Scholar
  67. Soliman, H. M. (1974). Analytical and experimental studies of flow patterns during condensation inside horizontal tubes, Ph.D. Dissertation, Kansas State University, Manhattan, KS.Google Scholar
  68. Tabatabai, A., & Faghri, A. (2001). A new two-phase flow map and transition boundary accounting for surface tension effects in horizontal miniature and micro tubes. Journal of Heat Transfer, 123, 958–968.CrossRefGoogle Scholar
  69. Taitel, Y., & Dukler, A. E. (1976). A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 22, 47–55.CrossRefGoogle Scholar
  70. Tandon, T. N., Varma, H. K., & Gupta, C. P. (1982). A new flow regime map for condensation inside horizontal tubes. Journal of Heat Transfer, 104, 763–768.CrossRefGoogle Scholar
  71. Teng, H., Cheng, P., & Zhao, T. S. (1999). Instability of condensate film and capillary blocking in small-diameter-thermosyphon condensers. International Journal of Heat and Mass Transfer, 42, 3071–3083.CrossRefGoogle Scholar
  72. Thome, J. R. S. (1964). Prediction of pressure drop during forced circulation boiling of water. International Journal of Heat and Mass Transfer, 7, 709–724.CrossRefGoogle Scholar
  73. Thome, J. R. (2016). The heat transfer engineering data book III. Ulm: Wieland-Werke AG.Google Scholar
  74. Thome, J. R., Dupont, V., & Jacobi, A. M. (2004). Heat transfer model for evaporation in microchannels. Part I: Presentation of model. International Journal of Heat and Mass Transfer, 47, 3375–3385.CrossRefGoogle Scholar
  75. Thome, J. R., & El Hajal, J. (2003). Two-phase flow pattern map for evaporation in horizontal tubes: Latest version. Heat Transfer Engineering, 24, 3–10.CrossRefGoogle Scholar
  76. Tran, T. N., Wambsganns, M. W., & France, D. M. (1996). Small circular-and rectangular-channel boiling with two refrigerants. International Journal of Multiphase Flow, 22, 485–498.CrossRefGoogle Scholar
  77. Triplett, K. A., Ghiaasiaan, S. M., Abdel-Khalik, S. I., & Sadowski, D. L. (1999). Gas-liquid two-phase flow in microchannels—Part I: Two-phase flow pattern. International Journal of Multiphase Flow, 25, 377–394.CrossRefGoogle Scholar
  78. Turner, J. M. (1966). Annular two-phase flow. Ph.D. Dissertation, Dartmouth College, Hanover, NH.Google Scholar
  79. Vasiliev, L. L, Grakovich, L. P., & Khrustalev, D. K. (1984). Gravity-assisted heat pipes for solar energy collectors. In Proceedings of the 5th International Heat Pipe Conference (Vol. 3, pp. 19–24). Tsukuba, Japan, Pre-prints.Google Scholar
  80. Vlasie, C., Macchi, H., Guilpart, J., & Agostini, B. (2004). Flow boiling in small diameter channels. International Journal of Refrigeration, 27, 191–201.CrossRefGoogle Scholar
  81. Wambsganss, M. W., Jendrzejczyk, J. A., & France, D. M. (1991). Two-phase flow patterns and transitions in a small, horizontal, rectangular channel. International Journal of Multiphase Flow, 17, 327–342.CrossRefGoogle Scholar
  82. Wilmarth, T., & Ishii, M. (1994). Two-phase flow regimes in narrow rectangular vertical and horizontal channels. International Journal of Heat and Mass Transfer, 37, 1749–1758.CrossRefGoogle Scholar
  83. Yu, W., France, D. M., Wambsgans, M. W., & Hull, J. R. (2002). Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. International Journal of Multiphase Flow, 28, 927–941.CrossRefGoogle Scholar
  84. Zeng, L. Z., Klausner, J. F., Bernhard, D. M., & Mei, R. (1993). A unified model for the prediction of bubble detachment diameters in boiling systems - II. Flow boiling. International Journal of Heat and Mass Transfer, 36, 2271–2279.CrossRefGoogle Scholar
  85. Zhang, Y., Faghri, A., & Shafii, M. B. (2001). Capillary blocking in forced convective condensation in horizontal miniature channels. Journal of Heat Transfer, 123, 501–511.CrossRefGoogle Scholar
  86. Zivi, S. M. (1964). Estimation of steady-state void fraction by means of the principle of minimum energy production. Journal of Heat Transfer, 86, 247–252.CrossRefGoogle Scholar
  87. Zuber, N. (1961). The dynamics of vapor bubbles in nonuniform temperature fields. International Journal of Heat and Mass Transfer, 2, 83–98.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations