Advertisement

Genetics of Acquired Cytokine Storm Syndromes

  • Grant S. Schulert
  • Kejian ZhangEmail author
Chapter

Abstract

Secondary hemophagocytic lymphohistiocytosis (sHLH) has historically been defined as a cytokine storm syndrome (CSS) occurring in the setting of triggers leading to strong immunological activation, without any known genetic predilection. However, recent studies have suggested that existing underlying genetic factors may synergize with particular diseases and/or environmental triggers (including infection, autoimmune/autoinflammatory disorder, or malignant transformation), leading to sHLH. With the recent advances in genetic testing technology, more patients are examined for genetic variations in primary HLH (pHLH) associated genes, including through whole-exome and whole-genome sequencing. This expanding genetic and genomic evidence has revealed HLH as a more complex phenomenon, resulting from specific immune challenges in patients with a susceptible genetic background. Rather than a simple, binary definition of pHLH and sHLH, HLH represents a spectrum of diseases, from a severe complication of common infections (EBV, influenza) to early onset familial diseases that can only be cured by transplantation.

Keywords

Secondary pHLH sHLH EBV Infections Malignancies Rheumatic diseases MAS Inflammatory Autoimmune and autoinflammatory 

References

  1. 1.
    Henter, J. I., Horne, A., Arico, M., Egeler, R. M., Filipovich, A. H., Imashuku, S., et al. (2007). HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatric Blood and Cancer, 48, 124–131.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Schram, A. M., & Berliner, N. (2015). How I treat hemophagocytic lymphohistiocytosis in the adult patient. Blood, 125(19), 2908–2914.CrossRefGoogle Scholar
  3. 3.
    Trottestam, H., Horne, A., Aricò, M., Egeler, R. M., Filipovich, A. H., Gadner, H., et al. (2011). Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: Long-term results of the HLH-94 treatment protocol. Blood, 118, 4577–4584.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cattaneo, C., Oberti, M., Skert, C., Passi, A., Farina, M., Re, A., et al. (2016). Adult onset hemophagocytic lymphohistiocytosis prognosis is affected by underlying disease and coexisting viral infection: Analysis of a single institution series of 35 patients. Hematological Oncology.Google Scholar
  5. 5.
    Magaki, S., Ostrzega, N., Ho, E., Yim, C., Wu, P., & Vinters, H. V. (2017). Hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus in the central nervous system. Human Pathology, 59, 108–112.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kasahara, Y., Yachie, A., Takei, K., Kanegane, C., Okada, K., Ohta, K., et al. (2001). Differential cellular targets of Epstein-Barr virus (EBV) infection between acute EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Blood, 98, 1882–1888.CrossRefGoogle Scholar
  7. 7.
    Bonnecaze, A. K., Willeford, W. G., Lichstein, P., & Ohar, J. (2017). Acute cytomegalovirus (CMV) infection associated with hemophagocytic lymphohistiocytosis (HLH) in an immunocompetent host meeting all eight HLH 2004 diagnostic criteria. Cureus, 9, e1070.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Morimoto, A., Nakazawa, Y., & Ishii, E. (2016). Hemophagocytic lymphohistiocytosis: Pathogenesis, diagnosis, and management. Pediatrics International, 58, 817–825.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yanagimachi, M., Goto, H., Miyamae, T., Kadota, K., Imagawa, T., Mori, M., et al. (2011). Association of IRF5 polymorphisms with susceptibility to hemophagocytic lymphohistiocytosis in children. Journal of Clinical Immunology, 31, 946–951.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hatta, K., Morimoto, A., Ishii, E., Kimura, H., Ueda, I., Hibi, S., et al. (2007). Association of transforming growth factor-beta1 gene polymorphism in the development of Epstein-Barr virus-related hematologic diseases. Haematologica, 92, 1470–1474.PubMedCrossRefGoogle Scholar
  11. 11.
    Filipovich, A. H. (2011). The expanding spectrum of hemophagocytic lymphohistiocytosis. Current Opinion in Allergy and Clinical Immunology, 11, 512–516.PubMedCrossRefGoogle Scholar
  12. 12.
    Stepensky, P., Weintraub, M., Yanir, A., Revel-Vilk, S., Krux, F., Huck, K., et al. (2011). IL-2-inducible T-cell kinase deficiency: Clinical presentation and therapeutic approach. Haematologica, 96, 472–476.PubMedCrossRefGoogle Scholar
  13. 13.
    Salzer, E., Daschkey, S., Choo, S., Gombert, M., Santos-Valente, E., Ginzel, S., et al. (2013). Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica, 98(3), 473–478.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Izawa, K., Martin, E., Soudais, C., Bruneau, J., Boutboul, D., Rodriguez, R., et al. (2017). Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. The Journal of Experimental Medicine, 214(1), 73–89.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Li, F. Y., Chaigne-Delalande, B., Su, H., Uzel, G., Matthews, H., & Lenardo, M. J. (2014). XMEN disease: A new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood, 123(14), 2148–2152.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bohne, S., Kentouche, K., Petersen, I., Fritzenwanger, M., Pletz, M. W., Lehmberg, K., et al. (2013). Fulminant Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. The Laryngoscope, 123, 362–365.PubMedCrossRefGoogle Scholar
  17. 17.
    Henter, J.-I., Palmkvist-Kaijser, K., Holzgraefe, B., Bryceson, Y. T., & Palmér, K. (2010). Cytotoxic therapy for severe swine flu A/H1N1. Lancet, 376, 2116.PubMedCrossRefGoogle Scholar
  18. 18.
    Unal, S., Gökçe, M., Aytaç-Elmas, S., Karabulut, E., Altan, I., Ozkaya-Parlakay, A., et al. (2010). Hematological consequences of pandemic influenza H1N1 infection: A single center experience. The Turkish Journal of Pediatrics, 52, 570–575.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tang, J. W., Shetty, N., & Lam, T. T.-Y. (2010). Features of the new pandemic influenza A/H1N1/2009 virus: Virology, epidemiology, clinical and public health aspects. Current Opinion in Pulmonary Medicine, 16, 235–241.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Randolph, A. G., Vaughn, F., Sullivan, R., Rubinson, L., Thompson, B. T., Yoon, G., et al. (2011). Critically ill children during the 2009-2010 influenza pandemic in the United States. Pediatrics, 128, e1450–e1458.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Yöntem, Y., Ilker, D., Yeşim, O., Ayşen, T., Gülcihan, O., Özgür, C., et al. (2013). Analysis of fatal cases of pandemic influenza A (H1N1) virus infections in pediatric patients with leukemia. Pediatric Hematology and Oncology, 30, 437–444.PubMedCrossRefGoogle Scholar
  22. 22.
    Schulert, G. S., Zhang, M., Fall, N., Husami, A., Kissell, D., Hanosh, A., et al. (2016). Whole-exome sequencing reveals mutations in genes linked to hemophagocytic lymphohistiocytosis and macrophage activation syndrome in fatal cases of H1N1 influenza. Journal of Infectious Diseases, 213, 1180–1188.PubMedCrossRefGoogle Scholar
  23. 23.
    Kumar, V. S., & Sharma, S. (2016). A case of HLH secondary to visceral leishmaniasis. The Journal of the Association of Physicians of India, 64(1), 108–109.Google Scholar
  24. 24.
    Foley, J. M., Borders, H., & Kurt, B. A. (2016). A diagnostic dilemma: Similarity of neuroradiological findings in central nervous system hemophagocytic lymphohistiocytosis and aspergillosis. Pediatric Blood and Cancer, 63(7), 1296–1299.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Liang, G., Qin, H., Li, Y., & Zeng, X. (2017). Tuberculosis-associated hemophagocytic lymphohistiocytosis with initial presentation of fever of unknown origin in a general hospital: An analysis of 8 clinical cases. Medicine (Baltimore), 96(16), e6575.CrossRefGoogle Scholar
  26. 26.
    Atteritano, M., David, A., Bagnato, G., Beninati, C., Frisina, A., Iaria, C., et al. (2012). Haemophagocytic syndrome in rheumatic patients. A systematic review. European Review for Medical and Pharmacological Sciences, 16(10), 1414–1424.Google Scholar
  27. 27.
    Ahn, S. S., Yoo, B.-W., Jung, S. M., Lee, S.-W., Park, Y.-B., Song, J. J. (2017). In-hospital mortality in febrile lupus patients based on 2016 EULAR/ACR/PRINTO classification criteria for macrophage activation syndrome. Seminars in Arthritis and Rheumatism.Google Scholar
  28. 28.
    Gavand, P.-E., Serio, I., Arnaud, L., Costedoat-Chalumeau, N., Carvelli, J., Dossier, A., et al. (2017). Clinical spectrum and therapeutic management of systemic lupus erythematosus-associated macrophage activation syndrome: A study of 103 episodes in 89 adult patients. Autoimmunity Reviews, 16(7), 743–749.CrossRefGoogle Scholar
  29. 29.
    Lee, W.-I., Chen, S.-H., Hung, I.-J., Yang, C.-P., Jaing, T.-H., Chen, C.-J., et al. (2009). Clinical aspects, immunologic assessment, and genetic analysis in Taiwanese children with hemophagocytic lymphohistiocytosis. The Pediatric Infectious Disease Journal, 28, 30–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Tesi, B., Chiang, S. C. C., El-Ghoneimy, D., Hussein, A. A., Langenskiöld, C., Wali, R., et al. (2015). Spectrum of atypical clinical presentations in patients with biallelic PRF1 missense mutations. Pediatric Blood and Cancer, 62, 2094–2100.PubMedCrossRefGoogle Scholar
  31. 31.
    Graham, R. R., Kozyrev, S. V., Baechler, E. C., Reddy, M. V. P. L., Plenge, R. M., Bauer, J. W., et al. (2006). A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nature Genetics, 38, 550–555.PubMedCrossRefGoogle Scholar
  32. 32.
    Kottyan, L. C., Zoller, E. E., Bene, J., Lu, X., Kelly, J. A., Rupert, A. M., et al. (2015). The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Human Molecular Genetics, 24, 582–596.PubMedCrossRefGoogle Scholar
  33. 33.
    Shimizu, M., Yokoyama, T., Tokuhisa, Y., Ishikawa, S., Sakakibara, Y., Ueno, K., et al. (2013). Distinct cytokine profile in juvenile systemic lupus erythematosus-associated macrophage activation syndrome. Clinical Immunology, 146(2), 73–76.CrossRefGoogle Scholar
  34. 34.
    Zhang, M., Bracaglia, C., Prencipe, G., Bemrich-Stolz, C. J., Beukelman, T., Dimmitt, R. A., et al. (2016). A heterozygous RAB27A mutation associated with delayed cytolytic granule polarization and hemophagocytic lymphohistiocytosis. Journal of Immunology, 196, 2492–2503.CrossRefGoogle Scholar
  35. 35.
    Son, M. B. F., & Newburger, J. W. (2013). Kawasaki Disease. Pediatrics in Review, 34, 151–162.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, W., Gong, F., Zhu, W., Fu, S., & Zhang, Q. (2015). Macrophage activation syndrome in Kawasaki disease: More common than we thought? Seminars in Arthritis and Rheumatism, 44, 405–410.CrossRefGoogle Scholar
  37. 37.
    Kang, H.-R., Kwon, Y.-H., Yoo, E.-S., Ryu, K.-H., Kim, J. Y., Kim, H.-S., et al. (2013). Clinical characteristics of hemophagocytic lymphohistiocytosis following Kawasaki disease: Differentiation from recurrent Kawasaki disease. Blood Research, 48, 254–257.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Titze, U., Janka, G., Schneider, E. M., Prall, F., Haffner, D., & Classen, C. F. (2009). Hemophagocytic lymphohistiocytosis and Kawasaki disease: Combined manifestation and differential diagnosis. Pediatric Blood and Cancer, 53, 493–495.PubMedCrossRefGoogle Scholar
  39. 39.
    Cummings, C., McCarthy, P., van Hoff, J., & Porter, G. (2008). Kawasaki disease associated with reactive hemophagocytic lymphohistiocytosis. The Pediatric Infectious Disease Journal, 27, 1116–1118.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin, C. I., Yu, H. H., Lee, J. H., Wang, L. C., Lin, Y. T., Yang, Y. H., et al. (2012). Clinical analysis of macrophage activation syndrome in pediatric patients with autoimmune diseases. Clinical Rheumatology, 31, 1223–1230.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lou, Y.-J., Jin, J., & Mai, W.-Y. (2007). Ankylosing spondylitis presenting with macrophage activation syndrome. Clinical Rheumatology, 26, 1929–1930.CrossRefGoogle Scholar
  42. 42.
    Filocamo, G., Petaccia, A., Torcoletti, M., Sieni, E., Ravelli, A., & Corona, F. (2016). Recurrent macrophage activation syndrome in spondyloarthritis and monoallelic missense mutations in PRF1: A description of one paediatric case. Clinical and Experimental Rheumatology, 34, 719.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhang, M., Behrens, E. M., Atkinson, T. P., Shakoory, B., Grom, A. A., & Cron, R. Q. (2014). Genetic defects in cytolysis in macrophage activation syndrome. Current Rheumatology Reports, 16, 439.CrossRefGoogle Scholar
  44. 44.
    Thomas, A., Appiah, J., Langsam, J., Parker, S., & Christian, C. (2013). Hemophagocytic lymphohistiocytosis associated with dermatomyositis: A case report. Connecticut Medicine, 77, 481–485.PubMedPubMedCentralGoogle Scholar
  45. 45.
    García-Montoya, L., Sáenz-Tenorio, C. N., Janta, I., Menárguez, J., López-Longo, F. J., Monteagudo, I., et al. (2017). Hemophagocytic lymphohistiocytosis in a patient with Sjögren’s syndrome: Case report and review. Rheumatology International, 37, 663–669.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rigante, D., Emmi, G., Fastiggi, M., Silvestri, E., & Cantarini, L. (2015). Macrophage activation syndrome in the course of monogenic autoinflammatory disorders. Clinical Rheumatology, 34(8), 1333–1339.CrossRefGoogle Scholar
  47. 47.
    Masters, S. L., Simon, A., Aksentijevich, I., & Kastner, D. L. (2009). Horror autoinflammaticus: The molecular pathophysiology of autoinflammatory disease (∗). Annual Review of Immunology, 27, 621–668.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Canna, S. W., de Jesus, A. A., Gouni, S., Brooks, S. R., Marrero, B., Liu, Y., et al. (2014). An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics, 46, 1140–1146.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liang, J., Alfano, D. N., Squires, J. E., Riley, M. M., Parks, W. T., Kofler, J., et al. (2017). Thrombotic vasculopathy, and congenital anemia and ascites. Pediatric and Developmental Pathology, 20(6), 498–505.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bader-Meunier, B., Florkin, B., Sibilia, J., Acquaviva, C., Hachulla, E., Grateau, G., et al. (2011). Mevalonate kinase deficiency: A survey of 50 patients. Pediatrics, 128, e152–e159.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Schulert, G. S., Bove, K., McMasters, R., Campbell, K., Leslie, N., & Grom, A. A. (2014). Mevalonate kinase deficiency associated with recurrent liver dysfunction, macrophage activation syndrome and perforin gene polymorphism. Arthritis Care & Research, 67, 1173–1179.CrossRefGoogle Scholar
  52. 52.
    Ramos-Casals, M., Brito-Zerón, P., López-Guillermo, A., Khamashta, M. A., & Bosch, X. (2014). Adult haemophagocytic syndrome. Lancet, 383, 1503–1516.CrossRefGoogle Scholar
  53. 53.
    Veerakul, G., Sanpakit, K., Tanphaichitr, V. S., Mahasandana, C., & Jirarattanasopa, N. (2002). Secondary hemophagocytic lymphohistiocytosis in children: An analysis of etiology and outcome. Journal of the Medical Association of Thailand, 85(Suppl 2), S530–S541.Google Scholar
  54. 54.
    Lehmberg, K., Sprekels, B., Nichols, K. E., Woessmann, W., Muller, I., Suttorp, M., et al. (2015). Malignancy-associated haemophagocytic lymphohistiocytosis in children and adolescents. British Journal of Haematology, 170(4), 539–549.CrossRefGoogle Scholar
  55. 55.
    Ménard, F., Besson, C., Rincé, P., Lambotte, O., Lazure, T., Canioni, D., et al. (2008). Hodgkin lymphoma-associated hemophagocytic syndrome: A disorder strongly correlated with Epstein-Barr virus. Clinical Infectious Diseases, 47, 531–534.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lehmberg, K., Sprekels, B., Nichols, K. E., Woessmann, W., Müller, I., Suttorp, M., et al. (2015). Malignancy-associated haemophagocytic lymphohistiocytosis in children and adolescents. British Journal of Haematology, 170, 539–549.CrossRefGoogle Scholar
  57. 57.
    Clementi, R., Locatelli, F., Dupré, L., Garaventa, A., Emmi, L., Bregni, M., et al. (2005). A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood, 105, 4424–4428.CrossRefGoogle Scholar
  58. 58.
    Trambas, C., Gallo, F., Pende, D., Marcenaro, S., Moretta, L., De Fusco, C., et al. (2005). A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin. Blood, 106, 932–937.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Chia, J., Yeo, K. P., Whisstock, J. C., Dunstone, M. A., Trapani, J. A., & Voskoboinik, I. (2009). Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 9809–9814.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Santoro, A., Cannella, S., Trizzino, A., Lo Nigro, L., Corsello, G., & Aricò, M. (2005). A single amino acid change A91V in perforin: A novel, frequent predisposing factor to childhood acute lymphoblastic leukemia? Haematologica, 90, 697–698.Google Scholar
  61. 61.
    Mehta, P. A., Davies, S. M., Kumar, A., Devidas, M., Lee, S., Zamzow, T., et al. (2006). Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Leukemia, 20, 1539–1541.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cannella, S., Santoro, A., Bruno, G., Pillon, M., Mussolin, L., Mangili, G., et al. (2007). Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lymphoma. Cancer, 109, 2566–2571.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Trapani, J. A., Thia, K. Y. T., Andrews, M., Davis, I. D., Gedye, C., Parente, P., et al. (2013). Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology, 2, e24185.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    El Abed, R., Bourdon, V., Voskoboinik, I., Omri, H., Youssef, Y. B., Laatiri, M. A., et al. (2011). Molecular study of the perforin gene in familial hematological malignancies. Hereditary Cancer in Clinical Practice, 9, 9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ciambotti, B., Mussolin, L., d’Amore, E. S. G., Pillon, M., Sieni, E., Coniglio, M. L., et al. (2014). Monoallelic mutations of the perforin gene may represent a predisposing factor to childhood anaplastic large cell lymphoma. Journal of Pediatric Hematology/Oncology, 36, e359–e365.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Moritake, H., Kamimura, S., Nunoi, H., Nakayama, H., Suminoe, A., Inada, H., et al. (2014). Clinical characteristics and genetic analysis of childhood acute lymphoblastic leukemia with hemophagocytic lymphohistiocytosis: A Japanese retrospective study by the Kyushu–Yamaguchi Children’s Cancer Study Group. International Journal of Hematology, 100, 70–78.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    zur Stadt, U., Schmidt, S., Diler, A. S., Henter, J. I., Kabisch, H., Schneppenheim, R., et al. (2005). Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Human Molecular Genetics, 14, 827–834.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Yoshida, N., Tsuzuki, S., Karube, K., Takahara, T., Suguro, M., Miyoshi, H., et al. (2015). STX11 functions as a novel tumor suppressor gene in peripheral T-cell lymphomas. Cancer Science, 106, 1455–1462.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rudd, E., Göransdotter Ericson, K., Zheng, C., Uysal, Z., Ozkan, A., Gürgey, A., et al. (2005). Spectrum and clinical implications of syntaxin 11 gene mutations in familial haemophagocytic lymphohistiocytosis: Association with disease-free remissions and haematopoietic malignancies. Journal of Medical Genetics, 43, e14–e14.CrossRefGoogle Scholar
  70. 70.
    Lofstedt, A., Chiang, S. C., Onelov, E., Bryceson, Y. T., Meeths, M., & Henter, J. I. (2015). Cancer risk in relatives of patients with a primary disorder of lymphocyte cytotoxicity: A retrospective cohort study. The Lancet. Haematology., 2(12), e536–e542.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Goi, K., Sugita, K., Nakamura, M., Miyamoto, N., Karakida, N., Iijima, K., et al. (1999). Development of acute lymphoblastic leukemia with translocation (4;11) in a young girl with familial pericentric inversion 12. Cancer Genetics and Cytogenetics, 110, 124–127.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Coenen, E. A., Zwaan, C. M., Reinhardt, D., Harrison, C. J., Haas, O. A., de Haas, V., et al. (2013). Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: A collaborative study by the International-Berlin-Frankfurt-Munster AML-study group. Blood, 122, 2704–2713.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Tokuda, K., Eguchi-Ishimae, M., Yagi, C., Kawabe, M., Moritani, K., Niiya, T., et al. (2014). CLTC-ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm. Genes, Chromosomes and Cancer, 53, 78–89.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Shah, M., Karnik, L., Nadal-Melsió, E., Reid, A., Ahmad, R., & Bain, B. J. (2015). ALK-positive anaplastic large cell lymphoma presenting with hemophagocytic lymphohistiocytosis. American Journal of Hematology, 90, 746.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Andrade, F. G., Noronha, E. P., Baseggio, R. M., Fonseca, T. C. C., Freire, B. M. R., Quezado Magalhaes, I. M., et al. (2016). Identification of the MYST3-CREBBP fusion gene in infants with acute myeloid leukemia and hemophagocytosis. Revista Brasileira de Hematologia e Hemoterapia, 38, 291–297.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Cohen, J. I., Dropulic, L., Hsu, A. P., Zerbe, C. S., Krogmann, T., Dowdell, K., et al. (2016). Association of GATA2 deficiency With severe primary Epstein-Barr Virus (EBV) infection and EBV-associated cancers. Clinical Infectious Diseases, 63, 41–47.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Usemann, J., Ernst, T., Schäfer, V., Lehmberg, K., & Seeger, K. (2016). EZH2 mutation in an adolescent with Weaver syndrome developing acute myeloid leukemia and secondary hemophagocytic lymphohistiocytosis. American Journal of Medical Genetics Part A, 170A, 1274–1277.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Agarwal, A., Sharma, S., & Airun, M. (2016). Symptomatic primary selective IgM immunodeficiency—B lymphoid cell defect in adult man with secondary HLH syndrome. The Journal of the Association of Physicians of India, 64(7), 91–93.PubMedPubMedCentralGoogle Scholar
  79. 79.
    van Montfrans, J. M., Rudd, E., van de Corput, L., Henter, J.-I., Nikkels, P., Wulffraat, N., et al. (2009). Fatal hemophagocytic lymphohistiocytosis in X-linked chronic granulomatous disease associated with a perforin gene variant. Pediatric Blood and Cancer, 52, 527–529.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Long, B., Cheng, L., Lai, S.-P., Zhang, J.-W., Sun, Y.-L., Lai, W.-X., et al. (2017). Tuberculosis-associated hemophagocytic lymphohistiocytosis in an umbilical cord blood transplant recipient. Clinica Chimica Acta, 468, 111–113.CrossRefGoogle Scholar
  81. 81.
    Filippone, E. J., & Farber, J. L. (2016). Hemophagocytic lymphohistiocytosis: An update for nephrologists. International Urology and Nephrology, 48, 1291–1304.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Amir, A. Z., Ling, S. C., Naqvi, A., Weitzman, S., Fecteau, A., Grant, D., et al. (2016). Liver transplantation for children with acute liver failure associated with secondary hemophagocytic lymphohistiocytosis. Liver Transplantation, 22, 1245–1253.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Haytoglu, Z., Yazici, N., & Erbay, A. (2017). Secondary hemophagocytic lymphohistiocytosis: Do we really need chemotherapeutics for all patients? Journal of Pediatric Hematology/Oncology, 39, e106–e109.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Erdol, S., Ture, M., Baytan, B., Yakut, T., & Saglam, H. (2016). An unusual case of LCHAD deficiency presenting with a clinical picture of hemophagocytic lymphohistiocytosis: Secondary HLH or coincidence? Journal of Pediatric Hematology/Oncology, 38, 661–662.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Duval, M., Fenneteau, O., Doireau, V., Faye, A., Emilie, D., Yotnda, P., et al. (1999). Intermittent hemophagocytic lymphohistiocytosis is a regular feature of lysinuric protein intolerance. The Journal of Pediatrics, 134(2), 236–239.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Pinto, M. V., Esteves, I., Bryceson, Y., & Ferrao, A. (2013). Hemophagocytic syndrome with atypical presentation in an adolescent. BMJ Case Reports, 2013.Google Scholar
  87. 87.
    Marcoux, M. O., Laporte-Turpin, E., Alberge, C., Fournie-Gardini, E., Castex, M. P., Rolland, M., et al. (2005). Congenital galactosaemia: An unusual presentation. Archives de Pédiatrie, 12, 160–162.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ben Turkia, H., Tebib, N., Azzouz, H., Abdelmoula, M. S., Ben Chehida, A., Caillaud, C., et al. (2009). Phenotypic continuum of type 2 Gaucher’s disease: An intermediate phenotype between perinatal-lethal and classic type 2 Gaucher’s disease. Journal of Perinatology, 29, 170–172.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Topaloğlu, R., Lebre, A. S., Demirkaya, E., Kuşkonmaz, B., Coşkun, T., Orhan, D., et al. (2008). Two new cases with Pearson syndrome and review of Hacettepe experience. The Turkish Journal of Pediatrics, 50, 572–576.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Olcay, L., Gümrük, F., Boduroğlu, K., Coşkun, T., & Tunçbilek, E. (1998). Anaemia and thrombocytopenia due to haemophagocytosis in a 7-month-old boy with galactosialidosis. Journal of Inherited Metabolic Disease, 21, 679–680.PubMedCrossRefGoogle Scholar
  91. 91.
    Papadopoulou, A., Krance, R. A., Allen, C. E., Lee, D., Rooney, C. M., Brenner, M. K., et al. (2014). Systemic inflammatory response syndrome after administration of unmodified T lymphocytes. Molecular Therapy, 22, 1134–1138.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Teachey, D. T., Rheingold, S. R., Maude, S. L., Zugmaier, G., Barrett, D. M., Seif, A. E., et al. (2013). Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood, 121, 5154–5157.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Canna, S. W., & Behrens, E. M. (2012). Making sense of the cytokine storm: A conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatric Clinics of North America, 59, 329–344.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Brisse, E., Wouters, C. H., & Matthys, P. (2016). Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: Differences and similarities. British Journal of Haematology, 174(2), 203–217.PubMedCrossRefGoogle Scholar
  95. 95.
    Cetica, V., Sieni, E., Pende, D., Danesino, C., De Fusco, C., Locatelli, F., et al. (2016). Genetic predisposition to hemophagocytic lymphohistiocytosis: Report on 500 patients from the Italian registry. The Journal of Allergy and Clinical Immunology, 137(1), 188–196.e184.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Vastert, S. J., van Wijk, R., D’Urbano, L. E., de Vooght, K. M., de Jager, W., Ravelli, A., et al. (2010). Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford), 49, 441–449.CrossRefGoogle Scholar
  97. 97.
    Zhang, K., Biroschak, J., Glass, D. N., Thompson, S. D., Finkel, T., Passo, M. H., et al. (2008). Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis and Rheumatism, 58, 2892–2896.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kaufman, K. M., Linghu, B., Szustakowski, J. D., Husami, A., Yang, F., Zhang, K., et al. (2014). Whole exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis and Rheumatology.Google Scholar
  99. 99.
    Tesi, B., Sieni, E., Neves, C., Romano, F., Cetica, V., Cordeiro, A. I., et al. (2015). Hemophagocytic lymphohistiocytosis in 2 patients with underlying IFN-gamma receptor deficiency. The Journal of Allergy and Clinical Immunology, 135(6), 1638–1641.CrossRefGoogle Scholar
  100. 100.
    Wang, Y., Ai, J., Xie, Z., Qin, Q., Wu, L., Liu, Y., et al. (2016). IL-10-592 A/C polymorphisms is associated with EBV-HLH in Chinese children. Hematology, 21(2), 95–98.PubMedCrossRefGoogle Scholar
  101. 101.
    Qiang, Q., Zhengde, X., Chunyan, L., Zhizhuo, H., Junmei, X., Junhong, A., et al. (2012). Killer cell immunoglobulin-like receptor gene polymorphisms predispose susceptibility to Epstein-Barr virus associated hemophagocytic lymphohistiocytosis in Chinese children. Microbiology and Immunology, 56(6), 378–384.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of RheumatologyUniversity of Cincinnati, College of MedicineCincinnatiUSA
  2. 2.Division of Human Genetics, Children’s Hospital Medical CenterUniversity of Cincinnati, College of MedicineCincinnatiUSA

Personalised recommendations