Advertisement

Optimization of Cutting Parameters in Milling by Means of System Nyquist Plot

  • R. M. KhusainovEmail author
  • P. N. Krestyaninov
  • D. D. Safin
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The paper dwells upon improving milling performance. Vibrations in machining represent one of the most significant factors that hinder such performance. Increasing some of the cutting parameters might result in greater vibrations. The so-called Nyquist criterion of dynamic stability is based on the Nyquist plot. On the other hand, the expression to compute the Nyquist plot of the dynamic system of a mill will include all the basic cutting parameters in relation to the cutting process. To determine the values of the Nyquist plot, an experiment is performed, consisting in machining a test workpiece on a milling machine. Cutting is performed once on the low cutting conditions. By using the experimentally found Nyquist plot values, one can build a mathematical model to find the performance-optimized cutting parameters, at which no significant vibrations occur. The proposed method minimizes the labor intensity of tailoring the cutting parameters to a specific production setting.

Keywords

Nyquist plot Dynamic stability Milling 

References

  1. 1.
    Safarov DT, Kondrashov AG, Glinina GF et al (2017) Algorithm of calculation of energy consumption on the basis of differential model of the production task performed on machines with computer numeric control (CNC). IOP Conf Ser Mater Sci Eng 240(1):012060CrossRefGoogle Scholar
  2. 2.
    Balabanov IP, Kondrashov AG (2014) Shaping of cutting part of angle milling cutters with nonzero geometry. World Appl Sci J 30(12):1731–1734Google Scholar
  3. 3.
    Ryabov EA, Yurasov SY, Yurasova OI (2016) Parametric modeling of ball end mills. Russ Eng Res 36(9):784–785CrossRefGoogle Scholar
  4. 4.
    Balla OM, Zamashchikov YI, Livshits OP et al (2006) ISTU Publ., IrkutskGoogle Scholar
  5. 5.
    Lavrentyeva MV, Chimitov PY (2017) Implementation of recognition algorithm with NXOpen API in siemens NX. In: 2017 international conference on industrial engineering, applications and manufacturing (ICIEAM), 2017, pp 1–4Google Scholar
  6. 6.
    Gavariev RV, Savin IA (2018) Research of the mechanism of destruction of compression molds for casting under pressure of color alloys. Solid State Phenom 284:326–331CrossRefGoogle Scholar
  7. 7.
    Shastin VI, Kargapoltcev SK, Gozbenko VE et al (2017) Results of the complex studies of microstructural, physical and mechanical properties of engineering materials using innovative methods. Int J Appl Eng Res 12(24):15269–15272Google Scholar
  8. 8.
    Metal Cutting Parameters (Rezhimy rezaniya metallov): Handbook (1995) NIITavtoprom, MoscowGoogle Scholar
  9. 9.
    Guzeyev VI, Batuyev VA, Surkov NV (2005) Cutting parameters for turning, drilling, milling, and boring CNC machines. Mashinostroyeniye, MoscowGoogle Scholar
  10. 10.
    Akhatov R, Govorkov A, Zhilyaev A (2015) Software solution designing of “The analysis system of workability of industrial product” during the production startup of aeronautical products. Int J Appl Eng Res 10(21):42560–42562Google Scholar
  11. 11.
    Serebrenitsky PP (2007) Some specific features of high-speed machining (Nekotorye osobennosti vysokoskorostnoy mekhanicheskoy obrabotki). Metalloobrabotka 4:6–15Google Scholar
  12. 12.
    Khusainov RM, Avdeyev IV, Krestyaninov PN, Safin DD (2017) Optimization of cutting parameters in milling by performance and vibration criteria (Podbor optimalnykh rezhimov rezaniya pri frezerovanii po pokazatelyam proizvoditelnosti i vibroustoychivosti). In: Proceedings of the international research conference on innovative mechanical-engineering technologies, equipment, and materials 2017 (MNTK IMTOM 2017), P1, Kazan, pp 147–152Google Scholar
  13. 13.
    Gorin YY, Kryazhev AY, Tatarkin YY et al (2015) Improving the vibration stability in end milling (Povysheniye vibroustoychivosti protsessa tortsovogo frezerovaniya). Polzunovsky Vestnik 2:43–48Google Scholar
  14. 14.
    Method for Testing Mid-Size General-Purpose Lathes for Vibration Stability in Cutting (Metodika ispytaniya tokarnykh stankov srednikh razmerov obshchego naznacheniya na vibroustoychivost pri rezanii) (1961) ENIMS, MoscowGoogle Scholar
  15. 15.
    Kozochkin M (2009) Particularities of vibrations in metal cutting (Osobennosti vibratsy pri rezanii materialov). STIN 1:25–29Google Scholar
  16. 16.
    Podurayev VN (1988) Technological diagnosis of cutting by acoustic emission (Tekhnologicheskaya diagnostika rezaniya metodom akusticheskoy emissii). Mashinostroyeniye, MoscowGoogle Scholar
  17. 17.
    Zharkov IG (1986) Vibrations in blade-based machining (Vibratsii pri obrabotke lezvynym instrumentom). Mashinostroyeniye, LeningradGoogle Scholar
  18. 18.
    Yakovlev EY (2009) Improving the quality of metal finishing in CNC end milling by neural-network modulation of cutting parameters (Povysheniye kachestva chistovoy obrabotki metallov pri tortsevom frezerovanii na stankakh s ChPU s ispolzovaniyem neyrosetevoy modulyatsiii rezhimov rezaniya). Inf Secur Quest 2:65–69Google Scholar
  19. 19.
    Averyanova IO, Shestakov NA (2013) Analysis of chipping in cutting (Analiz protsessa struzhkoobrazovaniya pri rezanii). Vestnik mashinostroyeniya 2:48–74Google Scholar
  20. 20.
    Kozochkin MP (2013) Cutting process stability (Ustoychivost protsessa rezaniya) Vestn mashinostroyeniya 2:77–81Google Scholar
  21. 21.
    Kudinov VA (1967) Machine dynamics (Dinamika stankov). Mashinostroyeniye, MoscowGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. M. Khusainov
    • 1
    Email author
  • P. N. Krestyaninov
    • 1
  • D. D. Safin
    • 1
  1. 1.Branch of Kazan University in Naberezhnye ChelnyNaberezhnye ChelnyRussia

Personalised recommendations