Advertisement

Finding Flow of Non-Newtonian Fluids in Circular Pipe with Wall-Adjacent Gas Layer

  • L. IlinaEmail author
  • P. Vasilyev
  • M. Krasnodubrovsky
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The paper describes the existing flow models for high-viscosity fluids flowing through a circular pipe with a wall-adjacent low-viscosity layer; the models considered are used to design devices to induce such flow of viscous and highly viscous fluids. The paper parameterizes the flow of fuel oil in a wall-adjacent gas layer, using a known mathematical model of two-layer annular flow of non-Newtonian fluids within a low-viscosity boundary layer. The research team has designed an experimental setup that contains a device for generating two-layer annular flow. The process has been studied experimentally. Primary-fluid and gas flow rates that are necessary for stable annular flow have been found empirically. The paper derives a regression equation to find the fuel-oil and air flow necessary to generate a wall-adjacent gas layer. Mathematical statistics proves the regression equation adequate. The resultant regression equation is recommendable for use to find the wall-adjacent gas flow to generate stable annular fuel-oil flow in a rough-surfaced steel pipe when designing industrial pipelines and networks.

Keywords

High-viscosity fluid Non-Newtonian fluid Wall-adjacent layer Annular flow Gas Fuel oil 

References

  1. 1.
    Mastobayev BN, Shammazov AM, Movsumzade EM (2002) Khimicheskiye sredstva i tekhnologii v truboprovodnom transporte nefti (Chemical Agents and Technologies for Oil Transport by Pipelines). Khimiya, Moscow, p 296Google Scholar
  2. 2.
    Chernikin VI (1949) Gidrotransport nefteproduktov po trubam (hydraulic transport of petroleum products by pipelines). Proceedings of Gubkin Moscow Petroleum Institute, issue 9Google Scholar
  3. 3.
    Ilina LA, Golovanchikov AB, Ilin AV, Vasilyeva YeV (2014) Snizheniye gidravlicheskogo soprotivleniya pri dvukhsloynom koltsevom techenii vysokovyazkoy zhidkosti v truboprovode (Hydraulic-resistance reduction by two-layer annular flow of high-viscosity fluids in pipelines). Izvestia VSTU. Series: rheology, processes, and devices in chemistry. Issue 7: Inter-University Proceedings 1(128):114–117Google Scholar
  4. 4.
    LA GolovanchikovAB Ilina, Ilin AV, Dulkina NA, Dulkin AB (2006) Transportirovka nefti i nefteproduktov s gazovym pogranichnym sloyem (boundary gas layer in oil and petroleum-product transport). Tekhnologii nefti i gaza 4:10–14Google Scholar
  5. 5.
    Golovanchikov AB, Dulkina NA, Vasilyeva YeV et al (2012) Ustroystvo dlya umensheniya gidravlicheskikh poter v truboprovode (device to reduce hydraulic losses in pipelines). Patent 120165 Russia, IPC F 15 D 1/06. /; VSTUGoogle Scholar
  6. 6.
    Golovanchikov AB, Konopaltseva YN, Ilin AV et al (2009) Ustroystvo dlya umensheniya gidravlicheskikh poter v truboprovode (device to reduce hydraulic losses in pipelines). Patent 84924 Russia, IPC F 15 D 1/06, F 17 D 1/20. /, VSTUGoogle Scholar
  7. 7.
    GolovanchikovAB, Ilina LA, Ilin AV et al (2007) Sposob transporta zhidkostey po truboprovodu (method for pipeline transport of fluids). Patent 2307975 Russia, IPC F 17 D 1/16, VSTUGoogle Scholar
  8. 8.
    Golovanchikov AB, Ilina LA, Ilin AV et al (2005) Transportny obogrevayemy truboprovod (heated transport pipeline). Patent 2250870 Russia, IPC 7 B 65 G 53/52, VSTUGoogle Scholar
  9. 9.
    Golovanchikov AB, Ilina LA, Ilin AV et al (2005) Sposob peremeshcheniya vyazkikh neftey i nefteproduktov (method for transporting viscous oils and petroleum products), Patent 2262035 Russia, IPC 7 F 17 D 1/14, F 15 D 1/02, VSTUGoogle Scholar
  10. 10.
    LA GolovanchikovAB Ilina, Ilin AV (2007) Teoreticheskiye osnovy techeniya zhidkostey v truboprovode s malovyazkim pogranichnym sloyem (theory behind fluid flow in pipelines with low-viscosity boundary layers). VSTU, Volgograd, p 108Google Scholar
  11. 11.
    Kasatkin AG (1971) Osnovnye protsessy i apparaty khimicheskoy tekhnologii (basic processes and devices in chemical technology). Khimiya, Moscow, p 784Google Scholar
  12. 12.
    Golovanchikov AB, YeV Vasilyeva, Ilina LA (2017) Granichnaya ustoychivost geterofaznykh zhidkostey na makro- i mikrourovnyakh (marginal stability of Heterophase Lluids at macro- and micro-levels). VSTU, Volgograd, p 131Google Scholar
  13. 13.
    Archibong-Eso A, Shi J, Baba YD, Aliyu AM, Raji YO, Yeung H (2018) High viscous oil–water two–phase flow: experiments and numerical simulations. Heat Mass Transf JGoogle Scholar
  14. 14.
    Andrade THF, Crivelaro KCO, Neto SRF, Lima AGB (2013) Isothermal and non-isothermal water and oil two-phase flow (core-flow) in curved pipes. Int J Multiphys 7(2)Google Scholar
  15. 15.
    Cazarez-Candia O, Piedra-González S (2017) Modeling of heavy oil-water core-annular upward flow in vertical pipes using the two-fluid model. J Petrol Sci Eng 150:146CrossRefGoogle Scholar
  16. 16.
    Gupta R, Turangan CK, Manica R (2016) Oil-water core-annular flow in vertical pipes: a CFD study. Canadian J Chem Eng, vol 94Google Scholar
  17. 17.
    Gadelha AJF et al (2013) Thermo-hydrodynamics of core-annular flow of water, heavy oil and air using CFX. Adv Chem Eng Sci 3:37CrossRefGoogle Scholar
  18. 18.
    Tyabin NV (1980) Rheological cybernetics (Reologicheskaya kibernetikia). Volgogradskaya Pravda, Volgograd, p 122Google Scholar
  19. 19.
    Golovanchikov AB, Ilina LA, Ilin AV (2004) Techeniye v trube nenyutonovskoy zhidkosti s malovyazkim pogranichnym sloyem (Non-Newtonian Fluid: Pipe Flow with a Low-Viscosity Boundary Layer). Izvestia VSTU. Series: conceptual design in education, engineering, and technology: Inter-University Proceedings 5:19–21Google Scholar
  20. 20.
    Pavlov KF, Romankov PG, Noskov AA (2006) Primery i zadachi po kursu protsessov i apparatov khimicheskoy tekhnologii (examples and problems for the course in chemical processes and devices), 13th edn, Reprint. AlianS, Moscow, p 575Google Scholar
  21. 21.
    Bondar AG, Statyukha GA (1976) Planirovaniye eksperimenta v khimicheskoy tekhnologii (Experiment Planning in Chemistry). Vishcha shkola, Kiev, p 184Google Scholar
  22. 22.
    Novitsky PV, Zograf IA (1991) Otsenka pogreshnostey rezultatov izmereny (Measurement Error Evaluation). Energoatomizdat, Leningrad, pp 169–181Google Scholar
  23. 23.
    Mitropolsky AK (1971) Tekhnika statisticheskikh vychisleny (Statistical Computing Technique). Glavnaya redaktsiya fiziko-matematicheskoy literatury, Moscow, p 576Google Scholar
  24. 24.
    Bolshev LN, Smirnov NV (1983) Tablitsy matematicheskoy statistiki (reference tables for mathematical statistics). Nauka, Moscow, pp 48–49Google Scholar
  25. 25.
    Förster E, Rönz B (1983) Regressions- und Korrelationsanalyse. Finansy i statistika, Moscow, p 303zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations