Advertisement

Getting Stuck in the Ordered Sequence: Disrupted Temporal Processing in Patients with Schizophrenia and What It Tells Us About the Sense of Time Continuity

  • Anne GierschEmail author
Chapter

Abstract

Phenomenologists have long reported a breakdown of the temporal structure of consciousness in patients with schizophrenia, with a disruption of the sense of time continuity. I shortly summarize the models in phenomenology and in experimental psychology that have been proposed to explain how we reach a sense of time continuity. More recently, experimental results have revealed timing difficulties in patients with schizophrenia, both at unconscious and conscious levels, with a surprising high time resolution at the unconscious level. Together with experimental results from different laboratories, available data suggest complex mechanisms and especially interactions between a high-temporal resolution unconscious level and low-resolution conscious level. We discuss how the idea of closed-loop systems and a close interaction between non-conscious and conscious mechanisms may help to understand the underpinnings of the feeling of time continuity. In contrast with an open-loop view in which perception’s finality would be to reflect the external world and its physical continuity, the closed-loop view emphasizes reciprocal interactions between us and the outer world.

Notes

Acknowledgments

I would like to thank Thomas Fuchs and Virginie van Wassenhove for discussions prior to the writing of this chapter, which have been an important source of inspiration for this chapter.

References

  1. Baird-Gunning, J. J. D., & Lueck, C. J. (2018). Central control of eye movements. Current Opinion in Neurology, 31(1), 90–95.  https://doi.org/10.1097/WCO.0000000000000514 CrossRefGoogle Scholar
  2. Billon, M., Semjen, A., Cole, J., & Gauthier, G. (1996). The role of sensory information in the production of periodic finger-tapping sequences. Experimental Brain Research, 110, 117–130.CrossRefGoogle Scholar
  3. Capa, R. L., Duval, C. Z., Blaison, D., & Giersch, A. (2014). Patients with schizophrenia selectively impaired in temporal order judgments. Schizophrenia Research, 156(1), 51–55.  https://doi.org/10.1016/j.schres.2014.04.001 CrossRefGoogle Scholar
  4. Ciullo, V., Spalletta, G., Caltagirone, C., Jorge, R. E., & Piras, F. (2016). Explicit time deficit in Schizophrenia: Systematic review and meta-analysis indicate it is primary and not domain specific. Schizophrenia Bulletin, 42(2), 505–518.  https://doi.org/10.1093/schbul/sbv104 CrossRefGoogle Scholar
  5. Dainton, B. (2017). Temporal consciousness. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2017 ed.). Retrieved from https://plato.stanford.edu/archives/fall2017/entries/consciousness-temporal/.
  6. Delevoye-Turrell, Y., Giersch, A., Wing, A. M., & Danion, J.-M. (2007). Motor fluency deficits in the sequencing of actions in schizophrenia. Journal of Abnormal Psychology, 116, 56–64.  https://doi.org/10.1037/0021-843X.116.1.56 CrossRefGoogle Scholar
  7. Deubel, H. (2008). The time course of presaccadic attention shifts. Psychological Research, 72(6), 630–640.  https://doi.org/10.1007/s00426-008-0165-3 CrossRefGoogle Scholar
  8. Elliott, M. A., & Giersch, A. (2016). What happens in a moment? Frontiers in Psychology, 6, 1905.  https://doi.org/10.3389/fpsyg.2015.01905 CrossRefGoogle Scholar
  9. Fekete, T., Van de Cruys, S., Ekroll, V., & van Leeuwen, C. (2018). In the interest of saving time: A critique of discrete perception. Neuroscience of Consciousness, 2018(1).  https://doi.org/10.1093/nc/niy003.
  10. Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2018). A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron, 99(4), 842–853.  https://doi.org/10.1016/j.neuron.2018.07.038 CrossRefGoogle Scholar
  11. Foucher, J. R., Lacambre, M., Pham, B.-T., Giersch, A., & Elliott, M. A. (2007). Low time resolution in schizophrenia: Lengthened windows of simultaneity for visual, auditory and bimodal stimuli. Schizophrenia Research, 97(1–3), 118–127.  https://doi.org/10.1016/j.schres.2007.08.013 CrossRefGoogle Scholar
  12. Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30(7), 309–316.  https://doi.org/10.1016/j.tins.2007.05.005 CrossRefGoogle Scholar
  13. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836.  https://doi.org/10.1098/rstb.2005.1622 CrossRefGoogle Scholar
  14. Fuchs, T. (2007). The temporal structure of intentionality and its disturbance in schizophrenia. Psychopathology, 40, 229–235.CrossRefGoogle Scholar
  15. Fuchs, T. (2013). Temporality and psychopathology. Phenomenology and the Cognitive Sciences, 12, 75–104.CrossRefGoogle Scholar
  16. Fuchs, T., & van Duppen, Z. (2017). Time and events: On the phenomenology of temporal experience in schizophrenia. Psychopathology, 50, 68–74.CrossRefGoogle Scholar
  17. Fuchs, T. (2018). Ecology of the brain. The phenomenology and biology of the embodied mind. Oxford: Oxford University Press.Google Scholar
  18. Giersch, A., Lalanne, L., Corves, C., Seubert, J., Shi, Z., Foucher, J., & Elliott, M. A. (2009). Extended visual simultaneity thresholds in patients with schizophrenia. Schizophrenia Bulletin, 35(4), 816–825.  https://doi.org/10.1093/schbul/sbn016 CrossRefGoogle Scholar
  19. Giersch, A., Poncelet, P. E., Capa, R. L., Martin, B., Duval, C. Z., Curzietti, M., … Lalanne, L. (2015). Disruption of information processing in schizophrenia: The time perspective. Schizophrenia Research. Cognition, 2(2), 78–83.  https://doi.org/10.1016/j.scog.2015.04.002 CrossRefGoogle Scholar
  20. Giersch, A., Franck, N., Martin, B., & Lalanne, L. (2017). Sense of time continuity: Patients with schizophrenia show the way. 40th European Conference on Visual Perception (ECVP) (August 27–31 in Berlin, Germany).Google Scholar
  21. Giersch, A., & Mishara, A. (2017a). Disrupted continuity of subjective time in the milliseconds range in the self-disturbances of schizophrenia: Convergence of experimental, phenomenological, and predictive coding accounts. Journal of Consciousness Studies, 24(3–4), 62–87.Google Scholar
  22. Giersch, A., & Mishara, A. L. (2017b). Is schizophrenia a disorder of consciousness? Experimental and phenomenological support for anomalous unconscious processing. Frontiers in Psychology, 8, 1659.  https://doi.org/10.3389/fpsyg.2017.01659 CrossRefGoogle Scholar
  23. Grabot, L., & van Wassenhove, V. (2017). Time order as psychological bias. Psychological Science, 28(5), 670–678.  https://doi.org/10.1177/0956797616689369 CrossRefGoogle Scholar
  24. Gross, G., Huber, G., Klosterkötter, J., & Linz, M. (2008). BSABS-Bonn scale for the assessment of basic symptoms: 1st English edition: Manual, commentary, references, index, documentation sheet (Berichte aus der Medizin). Aachen: Shaker Verlag.Google Scholar
  25. Harvey, C., Van der Burg, E., & Alais, D. (2014). Rapid temporal recalibration occurs crossmodally without stimulus specificity but is absent unimodally. Brain Research, 1585, 120–130.  https://doi.org/10.1016/j.brainres.2014.08.028 CrossRefGoogle Scholar
  26. Helfrich, R. F., Fiebelkorn, I. C., Szczepanski, S. M., Lin, J. J., Parvizi, J., Knight, R. T., & Kastner, S. (2018). Neural mechanisms of sustained attention are rhythmic. Neuron, 99(4), 854–865.  https://doi.org/10.1016/j.neuron.2018.07.032 CrossRefGoogle Scholar
  27. Herzog, M. H., Kammer, T., & Scharnowski, F. (2016). Time slices: What is the duration of a percept? PLoS Biology, 14(4), e1002433.  https://doi.org/10.1371/journal.pbio.1002433 CrossRefGoogle Scholar
  28. Husserl, E. (2012). On the phenomenology of the consciousness of internal time (1893–1917). Springer Science & Business Media.Google Scholar
  29. James, W. (1890). The principles of psychology. New York: Dover.Google Scholar
  30. Johansson, S., Riso, R., Hager, C., & Backstrom, L. (1992). Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate. Experimental Brain Research, 89, 192–203.CrossRefGoogle Scholar
  31. Kienitz, R., Schmiedt, J. T., Shapcott, K. A., Kouroupaki, K., Saunders, R. C., & Schmid, M. C. (2018). Theta rhythmic neuronal activity and reaction times arising from cortical receptive field interactions during distributed attention. Current Biology, 28(15), 2377–2387.e5.  https://doi.org/10.1016/j.cub.2018.05.086 CrossRefGoogle Scholar
  32. Lalanne, L., Van Assche, M., & Giersch, A. (2012a). When predictive mechanisms go wrong: Disordered visual synchrony thresholds in schizophrenia. Schizophrenia Bulletin, 38(3), 506–513.  https://doi.org/10.1093/schbul/sbq107 CrossRefGoogle Scholar
  33. Lalanne, L., Van Assche, M., Wang, W., & Giersch, A. (2012b). Looking forward: An impaired ability in patients with schizophrenia? Neuropsychologia, 50(12), 2736–2744.  https://doi.org/10.1016/j.neuropsychologia.2012.07.023 CrossRefGoogle Scholar
  34. Martin, B., Giersch, A., Huron, C., & van Wassenhove, V. (2013). Temporal event structure and timing in schizophrenia: Preserved binding in a longer “now”. Neuropsychologia, 51(2), 358–371.  https://doi.org/10.1016/j.neuropsychologia.2012.07.002 CrossRefGoogle Scholar
  35. Martin, B., Wittmann, M., Franck, N., Cermolacce, M., Berna, F., & Giersch, A. (2014). Temporal structure of consciousness and minimal self in schizophrenia. Frontiers in Psychology, 5, 1175.  https://doi.org/10.3389/fpsyg.2014.01175 Google Scholar
  36. Martin, B., Franck, N., Cermolacce, M., Falco, A., Benair, A., Etienne, E., … Giersch, A. (2017). Fragile temporal prediction in patients with schizophrenia is related to minimal self disorders. Scientific Reports, 7(1), 8278.  https://doi.org/10.1038/s41598-017-07987-y CrossRefGoogle Scholar
  37. Martin, B., Franck, N., Cermolacce, M., Coull, J. T., & Giersch, A. (2018). Minimal self and timing disorders in Schizophrenia: A case report. Frontiers in Human Neuroscience, 12, 132.  https://doi.org/10.3389/fnhum.2018.00132 CrossRefGoogle Scholar
  38. Minkowski, E. (1933/2005). Le temps vécu: Etudes phénoménologiques et psychopathologiques (2nd ed.). Presses Universitaires de France—PUF (1st publication 1933).Google Scholar
  39. Nobre, A. C., & van Ede, F. (2018). Anticipated moments: Temporal structure in attention. Nature Reviews. Neuroscience, 19(1), 34–48.  https://doi.org/10.1038/nrn.2017.141 CrossRefGoogle Scholar
  40. Noel, J.-P., Stevenson, R. A., & Wallace, M. T. (2018). Atypical audiovisual temporal function in autism and schizophrenia: Similar phenotype, different cause. The European Journal of Neuroscience, 47(10), 1230–1241.  https://doi.org/10.1111/ejn.13911 CrossRefGoogle Scholar
  41. Northoff, G., & Stanghellini, G. (2016). How to link brain and experience? Spatiotemporal psychopathology of the lived body. Frontiers in Human Neuroscience, 10, 76.  https://doi.org/10.3389/fnhum.2016.00172 CrossRefGoogle Scholar
  42. Parnas, J., Møller, P., Kircher, T., Thalbitzer, J., Jansson, L., Handest, P., & Zahavi, D. (2005). EASE: Examination of anomalous self-experience. Psychopathology, 38(5), 236–258.  https://doi.org/10.1159/000088441 CrossRefGoogle Scholar
  43. Pienkos, E., Giersch, A., Hansen, M., Humpston, C., McCarthy-Jones, S., Mishara, A., … Rosen, C. (2019). Hallucinations beyond voices: A conceptual review of the phenomenology of altered perception in psychosis. Schizophrenia Bulletin, 45, S67–S77.  https://doi.org/10.1093/schbul/sby057 CrossRefGoogle Scholar
  44. Poncelet, P. E., & Giersch, A. (2015). Tracking visual events in time in the absence of time perception: Implicit processing at the ms Level. PloS One, 10(6), e0127106.  https://doi.org/10.1371/journal.pone.0127106 CrossRefGoogle Scholar
  45. Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64(3), 295–301.Google Scholar
  46. Romanes, G. J. (1878). Consciousness of time. Mind, 3(11), 297–303.Google Scholar
  47. Sass, L., Pienkos, E., Skodlar, B., Stanghellini, G., Fuchs, T., Parnas, J., & Jones, N. (2017). EAWE: Examination of anomalous world experience. Psychopathology, 50(1), 10–54.  https://doi.org/10.1159/000454928 CrossRefGoogle Scholar
  48. Scharnowski, F., Rüter, J., Jolij, J., Hermens, F., Kammer, T., & Herzog, M. H. (2009). Long-lasting modulation of feature integration by transcranial magnetic stimulation. Journal of Vision, 9(6), 1–10.  https://doi.org/10.1167/9.6.1 CrossRefGoogle Scholar
  49. Schmidt, H., McFarland, J., Ahmed, M., McDonald, C., & Elliott, M. A. (2011). Low-level temporal coding impairments in psychosis: Preliminary findings and recommendations for further studies. Journal of Abnormal Psychology, 120(2), 476–482.  https://doi.org/10.1037/a0023387 CrossRefGoogle Scholar
  50. Schumacher, J., Wunderle, T., Fries, P., Jäkel, F., & Pipa, G. (2015). A statistical framework to infer delay and direction of information flow from measurements of complex systems. Neural Computation, 27(8), 1555–1608.  https://doi.org/10.1162/NECO_a_00756 CrossRefGoogle Scholar
  51. Spence, C., & Parise, C. (2010). Prior-entry: A review. Consciousness and Cognition, 19(1), 364–379.  https://doi.org/10.1016/j.concog.2009.12.001 CrossRefGoogle Scholar
  52. Spyropoulos, G., Bosman, C. A., & Fries, P. (2018). A theta rhythm in macaque visual cortex and its attentional modulation. Proceedings of the National Academy of Sciences of the United States of America, 115(24), E5614–E5623.  https://doi.org/10.1073/pnas.1719433115 CrossRefGoogle Scholar
  53. Stanghellini, G., Ballerini, M., Presenza, S., Mancini, M., Raballo, A., Blasi, S., & Cutting, J. (2016). Psychopathology of lived time: Abnormal time experience in persons with Schizophrenia. Schizophrenia Bulletin, 42(1), 45–55.  https://doi.org/10.1093/schbul/sbv052 Google Scholar
  54. Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., … Corlett, P. R. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634–643.  https://doi.org/10.1016/j.biopsych.2018.05.015 CrossRefGoogle Scholar
  55. Stevenson, R. A., Park, S., Cochran, C., McIntosh, L. G., Noel, J.-P., Barense, M. D., … T, M. (2017). The associations between multisensory temporal processing and symptoms of schizophrenia. Schizophrenia Research, 179, 97–103.  https://doi.org/10.1016/j.schres.2016.09.035 CrossRefGoogle Scholar
  56. Thoenes, S., & Oberfeld, D. (2017). Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy. Clinical Psychology Review, 54, 44–64.  https://doi.org/10.1016/j.cpr.2017.03.007 CrossRefGoogle Scholar
  57. Thorpe, S. J. (1990). Spike arrival times: A highly efficient coding scheme for neural networks. In R. Eckmiller, G. Hartmann, & G. Hauske (Eds.), Parallel processing in neural systems and computers (pp. 91–94). Amsterdam: Elsevier.Google Scholar
  58. Tschacher, W., Giersch, A., & Friston, K. (2017). Embodiment and schizophrenia: A review of implications and applications. Schizophrenia Bulletin, 43, 745–753.  https://doi.org/10.1093/schbul/sbw220 CrossRefGoogle Scholar
  59. VanRullen, R., Reddy, L., & Koch, C. (2005). Attention-driven discrete sampling of motion perception. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5291–5296.  https://doi.org/10.1073/pnas.0409172102 CrossRefGoogle Scholar
  60. VanRullen, R. (2018). Attention cycles. Neuron, 99(4), 632–634.  https://doi.org/10.1016/j.neuron.2018.08.006 CrossRefGoogle Scholar
  61. van Wassenhove, V. (2009). Minding time in an amodal representational space. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1525), 1815–1830.  https://doi.org/10.1098/rstb.2009.0023 CrossRefGoogle Scholar
  62. Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229.CrossRefGoogle Scholar
  63. Vogeley, K., & Kupke, C. (2007). Disturbances of time consciousness from a phenomenological and a neuroscientific perspective. Schizophrenia Bulletin, 33(1), 157–165.  https://doi.org/10.1093/schbul/sbl056 CrossRefGoogle Scholar
  64. Wittmann, M. (2011). Moments in time. Frontiers in Integrative Neuroscience, 5, 66.  https://doi.org/10.3389/fnint.2011.00066 CrossRefGoogle Scholar
  65. Wutz, A., Weisz, N., Braun, C., & Melcher, D. (2014). Temporal windows in visual processing: “Prestimulus brain state” and “poststimulus phase reset” segregate visual transients on different temporal scales. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(4), 1554–1565.  https://doi.org/10.1523/JNEUROSCI.3187-13.2014 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INSERM U1114, Pôle de Psychiatrie, Centre Hospitalier Régional Université de StrasbourgStrasbourgFrance

Personalised recommendations