Advertisement

Multistability in Ecosystems: Concerns and Opportunities for Ecosystem Function in Variable Environments

  • Ehud MeronEmail author
  • Yair Mau
  • Yuval R. Zelnik
Chapter
Part of the Mathematics of Planet Earth book series (MPE, volume 5)

Abstract

Ecosystems are highly nonlinear dissipative systems characterized by multiplicity of stable and unstable states. Two major concerns are associated with multistable ecosystems in variable environments. The first is related to the increased likelihood of extreme climate events at regional scales, such as droughts, floods, and heat waves, that may result in abrupt transitions to malfunctioning ecosystem states. The second concern is related to the dominant role played by humans in shaping and transforming the ecology of the Earth, and to the detrimental effects that such transformations often have. Using mathematical models of dryland ecosystems as a case study, we discuss recent advances that shed new light on these concerns. We first argue that state transitions can be gradual or incomplete rather than abrupt, providing opportunities for prevention and recovery. We further argue that analyzing the unstable states that exist along with the stable ones, identifying their existence ranges and their stable and unstable manifolds, can help to devise human intervention forms that direct ecosystems towards desired functional ecosystem states, without impairing ecosystem function. We conclude by presenting open problems and delineating further research directions.

Keywords

Dryland ecosystems Vegetation patterns Multistability Front dynamics Abrupt and gradual state transitions Human intervention 

Notes

Acknowledgements

Some of the results described here have been reported in earlier publications with additional colleagues, including Golan Bel, Stephan Getzin, Aric Hagberg, Lev Haim, Omer Tzuk, and Hezi Yizhaq. We gratefully acknowledge their contributions. The research leading to the results described in this chapter received funding from the Israel Science Foundation Grant 305/13.

References

  1. 1.
    Adeel, Z., Safriel, U., Niemeijer, D., et al.: Ecosystems and human well-being: Desertification synthesis. Technical Report of the Millennium Ecosystem Assessment, World Resources Institute, Washington, D.C. (2005)Google Scholar
  2. 2.
    Barbier, N., Couteron, P., Lefever, R., et al.: Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. Ecology 89, 1521–1531 (2008)CrossRefGoogle Scholar
  3. 3.
    Bel, G., Hagberg, A., Meron, E.: Gradual regime shifts in spatially extended ecosystems. Theor. Ecol. 5, 591–604 (2012)CrossRefGoogle Scholar
  4. 4.
    Borgogno, F., D’Odorico, P., Laio, F., et al.: Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophys. 47, RG1005 (2009)CrossRefGoogle Scholar
  5. 5.
    Borthagaray, A.I., Fuentes, M.A., Marquet, P.A.: Vegetation pattern formation in a fog-dependent ecosystem. J. Theor. Biol. 265(1), 18–26 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, Y., Kolokolnikov, T., Tzou, J., et al.: Patterned vegetation, tipping points, and the rate of climate change. Eur. J. Appl. Math. 26, 945–958 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Coullet, P., Lega, J., Houchmanzadeh, B., et al.: Breaking chirality in nonequilibrium system. Phys. Rev. Lett. 65, 1352 (1990)CrossRefGoogle Scholar
  8. 8.
    Cramer, M.D., Barger, N.N.: Are Namibian fairy circles the consequence of self-organizing spatial vegetation patterning? PloS One 8(8), e70,876 (2013)CrossRefGoogle Scholar
  9. 9.
    Cramer, M.D., Barger, N.N., Tschinkel, W.R.: Edaphic properties enable facilitative and competitive interactions resulting in fairy circle formation. Ecography 40, 1210–1220 (2017)CrossRefGoogle Scholar
  10. 10.
    Cross, M.C., Greenside, H.: Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Dawes, J.H.P., Williams, J.L.M.: Localised pattern formation in a model for dryland vegetation. J. Math. Biol. 73, 1–28 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    DeAngelis, D.L., Gross, L.J. (eds.): Individual-Based Models and Approaches on Ecology: Concepts and Models. Chapman and Hall, New York (1992)Google Scholar
  13. 13.
    DeAngelis, D.L., Yurek, S.: Spatially explicit modeling in ecology: A review. Ecosystems 20(2), 284–300 (2017). https://doi.org/10.1007/s10021-016-0066-z CrossRefGoogle Scholar
  14. 14.
    Deblauwe, V., Barbier, N., Couteron, P., et al.: The global biogeography of semi-arid periodic vegetation patterns. Glob. Ecol. Biogeogr. 17, 715–723 (2008)CrossRefGoogle Scholar
  15. 15.
    Dirzo, R., Young, H.S., Galetti, M., et al.: Defaunation in the anthropocene. Science 345, 401–406 (2014)CrossRefGoogle Scholar
  16. 16.
    D’Odorico, P., Bhattachan, A., Davis, K.F., et al.: Global desertification: Drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013)CrossRefGoogle Scholar
  17. 17.
    Duraiappah, A.K., Naeem, S.: Ecosystems and human well-being: biodiversity synthesis. Technical Report of the Millennium Ecosystem Assessment, World Resources Institute, Washington, DC. (2005)Google Scholar
  18. 18.
    Eldridge, D.J., Zaady, E., Shachak, M.: Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. J. Stat. Phys. 148, 723–739 (2012)Google Scholar
  19. 19.
    Ellis, E.C.: Ecology in an anthropogenic biosphere. Ecol. Monogr. 85, 287–331 (2015)CrossRefGoogle Scholar
  20. 20.
    Fernandez-Oto, C., Tlidi, M., Escaff, D., et al.: Strong interaction between plants induces circular barren patches: fairy circles. Phil. Trans. R. Soc. A 372(2027), 20140009 (2014)CrossRefGoogle Scholar
  21. 21.
    Field, C.B., Barros, V., Stocker, T.F., et al.: Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of the Intergovernmental Panel on Climate Change. Technical Report, Cambridge University Press, Cambridge, UK, and New York, NY (2013)Google Scholar
  22. 22.
    Getzin, S., Wiegand, K., Wiegand, T., et al.: Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia. Ecography 38, 1–11 (2015)CrossRefGoogle Scholar
  23. 23.
    Getzin, S., Yizhaq, H., Bell, B., et al.: Discovery of fairy circles in Australia supports self-organization theory. Proc. Natl. Acad. Sci. 113(13), 3551–3556 (2016)CrossRefGoogle Scholar
  24. 24.
    Gilad, E., Von Hardenberg, J., Provenzale, A., et al.: Ecosystem engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93, 098105 (2004)CrossRefGoogle Scholar
  25. 25.
    Gilad, E., Shachak, M., Meron, E.: Dynamics and spatial organization of plant communities in water limited systems. Theor. Popul. Biol. 72, 214–230 (2007)zbMATHCrossRefGoogle Scholar
  26. 26.
    Gilad, E., Von Hardenberg, J., Provenzale, A., et al.: A mathematical model for plants as ecosystem engineers. J. Theor. Biol. 244, 680 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Goldstein, R.E., Muraki, D.J., Petrich, D.M.: Interface proliferation and the growth of labyrinths in a reaction-diffusion system. Phys. Rev. E 53, 3933–3957 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gowda, K., Riecke, H., Silber, M.: Transitions between patterned states in vegetation models for semiarid ecosystems. Phys. Rev. E 89, 022,701 (2014)CrossRefGoogle Scholar
  29. 29.
    Grimm, V., Railsback, S.F.: Individual-based Modeling and Ecology. Princeton University Press, Princeton (2005)zbMATHCrossRefGoogle Scholar
  30. 30.
    Hagberg, A., Meron, E.: Complex patterns in reaction diffusion systems: a tale of two front instabilities. Chaos 4, 477–484 (1994)zbMATHCrossRefGoogle Scholar
  31. 31.
    Hagberg, A., Meron, E.: From labyrinthine patterns to spiral turbulence. Phys. Rev. Lett. 72, 2494–2497 (1994)CrossRefGoogle Scholar
  32. 32.
    Hagberg, A., Meron, E.: Pattern formation in non-gradient reaction diffusion systems: the effects of front bifurcations. Nonlinearity 7, 805–835 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Hagberg, A., Meron, E.: The dynamics of curved fronts: beyond geometry. Phys. Rev. Lett. 78, 1166–1169 (1997)CrossRefGoogle Scholar
  34. 34.
    Hagberg, A., Meron, E., Rubinstein, I., et al.: Controlling domain patterns far from equilibrium. Phys. Rev. Lett. 76, 427–430 (1996)CrossRefGoogle Scholar
  35. 35.
    Hastings, A.: The key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45 (2004)CrossRefGoogle Scholar
  36. 36.
    van Heijster, P., Doelman, A., Kaper, T.J., et al.: Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst. 9(2), 292–332 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Hilker, F.M., Lewis, M.A., Seno, H., et al.: Pathogens can slow down or reverse invasion fronts of their hosts. Biol. Invasions 7(5), 817–832 (2005)CrossRefGoogle Scholar
  38. 38.
    Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. In: Handbook of Dynamical Systems, vol. 3, pp. 379–524. Elsevier, Amsterdam (2010)Google Scholar
  39. 39.
    Ikeda, H., Mimura, M., Nishiura, Y.: Global bifurcation phenomena of travelling wave solutions for some bistable reaction-diffusion systems. Nonlinear Anal. Theory Methods Appl. 13, 507–526 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Juergens, N.: The biological underpinnings of Namib Desert fairy circles. Science 339(6127), 1618–1621 (2013)CrossRefGoogle Scholar
  41. 41.
    Kéfi, S., Vishwesha, G., Brock, W.A.: Early warning signals of ecological transitions: methods for spatial patterns. Plos One 9, e92097 (2014)CrossRefGoogle Scholar
  42. 42.
    Kinast, S., Zelnik, Y.R., Bel, G., et al.: Interplay between turing mechanisms can increase pattern diversity. Phys. Rev. Lett. 112, 078701 (2014)CrossRefGoogle Scholar
  43. 43.
    Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)CrossRefGoogle Scholar
  44. 44.
    Kletter, A.Y., von Hardenberg, J., Meron, E.: Ostwald ripening in dryland vegetation. Commun. Pure Appl. Anal. 11, 261–273 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Knobloch, E.: Spatially localized structures in dissipative systems: open problems. Nonlinearity 21, T45 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Knobloch, E.: Spatial localization in dissipative systems. Ann. Rev. Condens. Matter Phys. 6(1), 325–359 (2015)CrossRefGoogle Scholar
  47. 47.
    Kyriazopoulos, P., Jonathan, N., Meron, E.: Species coexistence by front pinning. Ecol. Complex. 20, 271–281 (2014)CrossRefGoogle Scholar
  48. 48.
    Lefever, R., Lejeune, O.: On the origin of tiger bush. Bull. Math. Biol. 59, 263–294 (1997)zbMATHCrossRefGoogle Scholar
  49. 49.
    Lejeune, O., Couteron, P., Lefever, R.: Short range co-operativity competing with long range inhibition explains vegetation patterns. Acta Oecol. 20(3), 171–183 (1999)CrossRefGoogle Scholar
  50. 50.
    Lejeune, O., Tlidi, M., Lefever, R.: Vegetation spots and stripes: dissipative structures in arid landscapes. Int. J. Quantum Chem. 98, 261–271 (2004)CrossRefGoogle Scholar
  51. 51.
    Maestre, F.T., Eldridge, D.J., Soliveres, S., et al.: Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47(1), 215–237 (2016)CrossRefGoogle Scholar
  52. 52.
    Marten, G.G.: Human Ecology - Basic Concepts for Sustainable Development. Earthscan Publications, London (2001)Google Scholar
  53. 53.
    Marts, B., Hagberg, A., Meron, E., et al.: Bloch-front turbulence in a periodically forced Belousov-Zhabotinsky reaction. Phys. Rev. Lett. 93(108305), 1–4 (2004)Google Scholar
  54. 54.
    Mau, Y., Hagberg, A., Meron, E.: Spatial periodic forcing can displace patterns it is intended to control. Phys. Rev. Lett. 109, 034102 (2012)CrossRefGoogle Scholar
  55. 55.
    Mau, Y., Haim, L., Hagberg, A., et al.: Competing resonances in spatially forced pattern-forming systems. Phys. Rev. E 88, 032,917 (2013)CrossRefGoogle Scholar
  56. 56.
    Mau, Y., Haim, L., Meron, E.: Reversing desertification as a spatial resonance problem. Phys. Rev. E 91, 012,903 (2015)CrossRefGoogle Scholar
  57. 57.
    Meron, E.: Modeling dryland landscapes. Math. Model. Nat. Phenom. 6, 163–187 (2011)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Meron, E.: Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012)CrossRefGoogle Scholar
  59. 59.
    Meron, E.: Nonlinear Physics of Ecosystems. CRC Press, Taylor & Francis Group, Boca Raton (2015)Google Scholar
  60. 60.
    Meron, E.: Pattern formation – a missing link in the study of ecosystem response to environmental changes. Math. Biosci. 271, 1–18 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Mimura, M., Tohma, M.: Dynamic coexistence in a three-species competition–diffusion system. Ecol. Complex. 21, 215–232 (2015)CrossRefGoogle Scholar
  62. 62.
    Petraitis, P.: Multiple Stable States in Natural Ecosystems. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar
  63. 63.
    Pismen, L.: Patterns and Interfaces in Dissipative Dynamics. Springer Series in Synergetics. Springer, Berlin (2006)Google Scholar
  64. 64.
    Pomeau, Y.: Front motion, metastability and subcritical bifurcations in hydrodynamics. Phys. D 23, 3 (1986)CrossRefGoogle Scholar
  65. 65.
    Ravi, S., Wang, L., Kaseke, K.F., et al.: Ecohydrological interactions within “fairy circles” in the Namib Desert: revisiting the self-organization hypothesis. J. Geophys. Res. Biogeosci. 122(2), 405–414 (2017)CrossRefGoogle Scholar
  66. 66.
    Reynolds, J.F., Smith, D.M.S., Lambin, E.F., et al.: Global desertification: building a science for dryland development. Science 316(5826), 847–851 (2007)CrossRefGoogle Scholar
  67. 67.
    Rietkerk, M., van de Koppel, J.: Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23(3), 169–175 (2008)CrossRefGoogle Scholar
  68. 68.
    Rietkerk, M., Boerlijst, M.C., van Langevelde, F., et al.: Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002)CrossRefGoogle Scholar
  69. 69.
    Rietkerk, M., Dekker, S.C., de Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)CrossRefGoogle Scholar
  70. 70.
    Scheffer, M., Bascompte, J., Brock, W.A., et al.: Early-warning signals for critical transitions. Nature 461, 387–393 (2009)CrossRefGoogle Scholar
  71. 71.
    Scheffer, M., Carpenter, S.R.: Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003)CrossRefGoogle Scholar
  72. 72.
    Scheffer, M., Carpenter, S., Foley, J.A., et al.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)CrossRefGoogle Scholar
  73. 73.
    Sherratt, J.A.: An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol. 51(2), 183–197 (2005). https://doi.org/10.1007/s00285-005-0319-5 MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Sherratt, J.A.: Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments, V: the transition from patterns to desert. SIAM J. Appl. Math. 73, 1347–1367 (2013)zbMATHGoogle Scholar
  75. 75.
    Sherratt, J.A.: When does colonisation of a semi-arid hillslope generate vegetation patterns? J. Math. Biol. 73, 199–226 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Sherratt, J.A., Synodinos, A.D.: Vegetation patterns and desertification waves in semi-arid environments: mathematical models based on local facilitation in plants. Discrete Contin. Dynam. Systems B 17(8), 2815–2827 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Shnerb, N.M., Sarah, P., Lavee, H., et al.: Reactive glass and vegetation patterns. Phys. Rev. Lett. 90, 0381011 (2003)CrossRefGoogle Scholar
  78. 78.
    Siero, E., Doelman, A., Eppinga, M.B., et al.: Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. Chaos 25(3), 036411 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Siteur, K., Siero, E., Eppinga, M.B., et al.: Beyond Turing: The response of patterned ecosystems to environmental change. Ecol. Complex. 20(0), 81–96 (2014)CrossRefGoogle Scholar
  80. 80.
    Siteur, K., Eppinga, M.B., Doelman, A., et al.: Ecosystems off track: rate-induced critical transitions in ecological models. Oikos 125, 1689–1699 (2016)CrossRefGoogle Scholar
  81. 81.
    Stone, L., Weisburd, R.S.J.: Positive feedback in aquatic ecosystems. Trends Ecol. Evol. 7, 263–267 (2016)CrossRefGoogle Scholar
  82. 82.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2001)zbMATHGoogle Scholar
  83. 83.
    Tarnita, C., Bonachela, J.A., Sheffer, E., et al.: A theoretical foundation for multi-scale regular vegetation patterns. Nature 541, 398–401 (2017)CrossRefGoogle Scholar
  84. 84.
    Tongway, D.J., Valentin, C., Seghieri, J., et al. (eds.): Banded Vegetation Patterning in Arid and Semiarid Environments: Ecological Processes and Consequences for Management. Ecological Studies, vol. 149. Springer, Basel (2001)Google Scholar
  85. 85.
    Tschinkel, W.: The life cycle and life span of Namibian fairy circles. PloS One 7(6), e38056 (2012)CrossRefGoogle Scholar
  86. 86.
    Valentine, C., d’Herbes, J., Poesen, J.: Soil and water components of banded vegetation patterns. Catena 37, 1–24 (1999)CrossRefGoogle Scholar
  87. 87.
    van der Stelt, S., Doelman, A., Hek, G.M., et al.: Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model. J. Nonlinear Sci. 23, 39–95 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Vohland, K., Barry, B.: A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agric. Ecosyst. Environ. 131, 119–127 (2009)CrossRefGoogle Scholar
  89. 89.
    von Hardenberg, J., Meron, E., Shachak, M., et al.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 89, 198101 (2001)CrossRefGoogle Scholar
  90. 90.
    Wiegand, T., Kissling, W.D., Cipriotti, P.A., et al.: Extending point pattern analysis for objects of finite size and irregular shape. J. Ecol. 94(4), 825–837 (2006)CrossRefGoogle Scholar
  91. 91.
    Zelnik, Y.R., Meron, E.: Regime shifts by front dynamics. Ecol. Indic. 94, 544–552 (2018). https://doi.org/10.1016/j.ecolind.2017.10.068 CrossRefGoogle Scholar
  92. 92.
    Zelnik, Y.R., Kinast, S., Yizhaq, H., et al.: Regime shifts in models of dryland vegetation. Philos. Trans. R. Soc. A 371, 20120358 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Zelnik, Y.R., Meron, E., Bel, G.: Gradual regime shifts in fairy circles. Proc. Natl. Acad. Sci. 112, 12,327–12,331 (2015)Google Scholar
  94. 94.
    Zelnik, Y.R., Meron, E., Bel, G.: Localized states qualitatively change the response of ecosystems to varying conditions and local disturbances. Ecol. Complex. 25, 26–34 (2016)CrossRefGoogle Scholar
  95. 95.
    Zelnik, Y.R., Uecker, H., Feudel, U., et al.: Desertification by front propagation? J. Theor. Biol. 418, 27–35 (2017)MathSciNetCrossRefGoogle Scholar
  96. 96.
    Zelnik, Y.R., Gandhi, P., Knobloch, E., et al.: Implications of tristability in pattern-forming ecosystems. Chaos Interdiscip. J. Nonlinear Sci. 28(3), 033609 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Blaustein Institutes for Desert Research and Physics DepartmentBen-Gurion University of the NegevBeershebaIsrael
  2. 2.Department of Soil and Water SciencesRobert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovotIsrael
  3. 3.Centre for Biodiversity Theory and ModellingTheoretical and Experimental Ecology Station, CNRSMoulisFrance

Personalised recommendations