Advertisement

A Risk-Structured Mathematical Model of Buruli Ulcer Disease in Ghana

  • Christina Edholm
  • Benjamin Levy
  • Ash Abebe
  • Theresia Marijani
  • Scott Le Fevre
  • Suzanne LenhartEmail author
  • Abdul-Aziz Yakubu
  • Farai Nyabadza
Chapter
Part of the Mathematics of Planet Earth book series (MPE, volume 5)

Abstract

This chapter discusses a mathematical model for the spread of an infectious disease with transmission through a pathogen in an environment, including the effects of human contact with the environment. The model assumes a structured susceptible population consisting of both “low-risk” and “high-risk” individuals. It also includes the effects of shedding the pathogen by the infected population into the environment. The model has a disease-free equilibrium state, and a linear stability analysis shows three possible transmission routes. The model is applied to Buruli ulcer disease, a debilitating disease induced by Mycobacterium ulcerans. There is some uncertainty about the exact transmission path, but the bacteria is known to live in natural water environments. The model parameters are estimated from data on Buruli ulcer disease in Ghana. This chapter includes a sensitivity analysis of the total number of infected individuals to the parameters in the model.

Keywords

Infectious disease Buruli ulcer disease Pathogen in environment Risk-structured model Ghana 

Notes

Acknowledgements

The authors acknowledge partial support from the National Science Foundation (NSF) under Grant No. 1343651 through the Southern Africa Mathematical Sciences Association (SAMSA) Masamu Program—a program that aims to enhance research in the mathematical sciences by serving as a platform for US–Africa research collaborations. This work was also partially supported by the National Institute for Mathematical and Biological Synthesis (NIMBioS)—one of the several Mathematical Sciences Institutes sponsored by the NSF Division of Mathematical Sciences—through NSF Award DBI-1300426, with additional support from The University of Tennessee, Knoxville. The authors appreciate the support for travel expenses from the Society of Mathematical Biology. They acknowledge an invaluable conversation with Pam Small and Heather Williamson about transmission mechanisms.

References

  1. 1.
    Altizer, S., Ostfeld, R.S., Johnson, P.T., et al.: Climate change and infectious diseases: from evidence to a predictive framework. Science 341(6145), 514–519 (2013)CrossRefGoogle Scholar
  2. 2.
    Amofah, G., Bonsu, F., Tetteh, C., et al.: Buruli Ulcer in Ghana: results of a national case search. Emerg. Infect. Dis. 2, 167–170 (2002)CrossRefGoogle Scholar
  3. 3.
    Benbow, M.E., Williamson, H., Kimbirauskas, R., et al.: Aquatic invertebrates as unlikely vectors of Buruli ulcer disease. Emerg. Infect. Dis. 14(8), 1247 (2008)CrossRefGoogle Scholar
  4. 4.
    Benbow, M.E., Kimbirauskas, R., McIntosh, M.D., et al.: Aquatic macroinvertebrate assemblages of Ghana, West Africa: understanding the ecology of a neglected tropical disease. Ecohealth 11(2), 168–183 (2014)Google Scholar
  5. 5.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57(1), 289–300 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62(2), 229–243 (1994)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bonyah, E., Dontwi, I., Nyabadza, F.: A theoretical model for the transmission dynamics of the Buruli ulcer with saturated treatment. Comput. Math. Methods Med. 2014, 576039 (2014)Google Scholar
  8. 8.
    Breban, R.: Role of environmental persistence in pathogen transmission: a mathematical modeling approach. J. Math. Biol. 66, 535–546 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cook, A.: The Mengo Hospital Notes. Makerere College Medical School Library, Kampala (1897)Google Scholar
  10. 10.
    De Silva, M.T., Portaels, F., Pedrosa, J.: Aquatic insects and mycobacterium ulcerans: an association relevant to Buruli ulcer control. PLoS Med. 4, e63 (2007).  https://doi.org/10.1371/journal.pmed.0040063 CrossRefGoogle Scholar
  11. 11.
    De Silva, K.R., Eda, S., Lenhart, S.: Modeling environmental transmission of MAP infection in dairy cows. Math. Biosci. Eng. 4, 1001–1017 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Diekmann, O., Heesterbeek, J.P.: Mathematical Epidemiology of Infectious Diseases. Wiley, Chichester (2000)zbMATHGoogle Scholar
  13. 13.
    Diekmann, O., Heesterbeek, H., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton (2012)zbMATHCrossRefGoogle Scholar
  14. 14.
    Duker, A.A., Portaels, F., Hale, M.: Pathways of Mycobacterium ulcerans infection: a review. Environ. Int. 32, 567–573 (2006)CrossRefGoogle Scholar
  15. 15.
    Feller, E.C., Pearson, E.S.: Tests for rank correlation coefficients: II. Biometrika 48, 29–40 (1961)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Garchitorena, A., Ngonghala, C.N., Guegan, J.F., et al.: Economic inequality caused by feedbacks between poverty and the dynamics of a rare tropical disease: the case of Buruli ulcer in sub-Saharan Africa. Proc. R. Soc. B 282, 20151426 (2015)CrossRefGoogle Scholar
  17. 17.
    Garchitorena, A., Ngonghala, C.N., Texier, G., et al.: Environmental transmission of Mycobacterium ulcerans drives dynamics of Buruli ulcer in endemic regions of Cameroon. Sci. Rep. 5, 18055 (2015)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Janssens, P.G., Quertinmont, M.J., Sieniawski, J., et al.: Necrotic tropical ulcers and Mycobacterial causative agents. Trop. Geogr. Med. 11, 293–312 (1959)Google Scholar
  20. 20.
    Kelly Jr, M.R., Tien, J.H., Eisenberg, M.C., et al.: The impact of spatial arrangements on epidemic disease dynamics and intervention strategies. J. Biol. Dyn. 10, 222–249 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kenu, E., Nyarko, K.M., Seefeld, L., et al.: Risk factors for Buruli ulcer in Ghana–a case control study in the Suhum-Kraboa-Coaltar and Akuapem South Districts of the eastern region. PLoS Negl. Trop. Dis. 8(11), e3279 (2014)CrossRefGoogle Scholar
  22. 22.
    LaSalle, J.P.: The Stability of Dynamical Systems, vol. 25. SIAM, Philadelphia (1976)zbMATHCrossRefGoogle Scholar
  23. 23.
    MacCallum, P., Tolhurst, J.C.: A new Mycobacterial infection in man. J. Pathol. Bacteriol. 60, 93–122 (1948)CrossRefGoogle Scholar
  24. 24.
    Macklin, J.T.: An investigation of the properties of double radio sources using the Spearman partial rank correlation coefficient. Mon. Not. R. Astron. Soc. 199, 1119–1136 (1982)CrossRefGoogle Scholar
  25. 25.
    Marino, S., Hogue, I.B., Ray, C.J., et al.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Marion, E., Eyangoh, S., Yeramian, E., et al.: Seasonal and regional dynamics of M. ulcerans transmission in environmental context: deciphering the role of water bugs as hosts and vectors. PLoS Negl. Trop. Dis. 4, e731 (2010)CrossRefGoogle Scholar
  27. 27.
    Marsollier, L., Robert, R., Aubry, J., et al.: Aquatic insects as a vector for Mycobacterium ulcerans. Appl. Environ. Microbiol. 68(9), 4623–4628 (2002)CrossRefGoogle Scholar
  28. 28.
    Martcheva, M., Lenhart, S., Eda, S., et al.: An immuno-epidemiological model for Johne’s disease in cattle. Vet. Res. 46, 69 (2015)CrossRefGoogle Scholar
  29. 29.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Merritt, R.W., Walker, E.D., Small, P.L., et al.: Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl. Trop. Dis. 4, e911 (2016)CrossRefGoogle Scholar
  31. 31.
    Miller Neilan, R.L., Schaefer, E., Gaff, H., et al.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72, 2004–2018 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Morris, A., Gozlan, R.E., Hassani, H., et al.: Complex temporal climate signals drive the emergence of human water-borne disease. Emerg. Microbes Infect. 3, e56 (2014)CrossRefGoogle Scholar
  33. 33.
    Morris, A., Guégan, J.F., Benbow, M.E., et al.: Functional diversity as a new framework for understanding the ecology of an emerging generalist pathogen. EcoHealth 13, 570–581 (2016)CrossRefGoogle Scholar
  34. 34.
    Nyabadza, F., Bonyah, E.: On the transmission dynamics of Buruli ulcer in Ghana: insights through a mathematical model. BMC Res. Notes 8, 656 (2015)CrossRefGoogle Scholar
  35. 35.
    Pascual, M., Bouma, M.J., Dobson, A.P.: Cholera and climate: revisiting the quantitative evidence. Microbes Infect. 4, 237–245 (2002)CrossRefGoogle Scholar
  36. 36.
    Portaels, F., Elsen, P., Guimaraes-Peres, A., et al.: Insects in the transmission of Mycobacterium ulcerans infection. Lancet 353, 986 (1999)CrossRefGoogle Scholar
  37. 37.
    Röltgen, K., Pluschke, G.: Epidemiology and disease burden of Buruli ulcer: a review. Res. Rep. Trop. Med. 6, 59–73 (2016)Google Scholar
  38. 38.
    Shuai, Z., van den Driessche, P.: Global stability of infectious disease models using Lyapunov functions. SIAM J. Appl. Math. 73, 1513–1532 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Siewe, N., Yakubu, A.A., Satoskar, A.R., et al.: Immune response to infection by Leishmania: a mathematical model. Math. Biosci. 276, 28–43 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Sopoh, G.E., Johnson, R.C., Chauty, A., et al.: Buruli ulcer surveillance, Benin, 2003–2005. Emerg. Infect. Dis. 9, 1374–1376 (2007)CrossRefGoogle Scholar
  41. 41.
    The World Bank: Ghana data. Technical report, The World Bank (2016). Retrieved from http://data.worldbank.org/country/ghana
  42. 42.
    Thomas, C.D., Cameron, A., Green, R.E., et al.: Extinction risk from climate change. Nature 427, 145–148 (2004)CrossRefGoogle Scholar
  43. 43.
    Tien, J.H., Earn, D.J.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    van den Driessche, P., Watmough, J.: Mathematical Epidemiology: Further Notes on the Basic Reproduction Number. Springer, Berlin (2008)zbMATHGoogle Scholar
  46. 46.
    van Ravensway, J., Benbow, M.E., Tsonis, A.A., et al.: Climate and landscape factors associated with Buruli ulcer incidence in Victoria, Australia. PLoS One 7, e51074 (2012)CrossRefGoogle Scholar
  47. 47.
    Wansbrough-Jones, M., Phillips, R.: Buruli ulcer: emerging from obscurity. Lancet 367(9525), 1849–1858 (2006)CrossRefGoogle Scholar
  48. 48.
    Williamson, H.R., Benbow, M.E., Nguyen, K.D., et al.: Distribution of Mycobacterium ulcerans in Buruli ulcer endemic and non-endemic aquatic sites in Ghana. PLoS Negl. Trop. Dis. 2 (2008)CrossRefGoogle Scholar
  49. 49.
    Williamson, H.R., Benbow, M.E., Campbell, L.P., et al.: Detection of Mycobacterium ulcerans in the environment predicts prevalence of Buruli ulcer in Benin. PLoS Negl. Trop. Dis. 6, e1506 (2012)CrossRefGoogle Scholar
  50. 50.
    Williamson, H., Mosi, L., Donnell, R., et al.: Mycobacterium ulcerans fails to infect through skin abrasions in a guinea pig infection model: implications for transmission. PLoS Negl. Trop. Dis. 8, e2770 (2014)CrossRefGoogle Scholar
  51. 51.
    World Health Organization (WHO): Weekly epidemiological record. Technical report, World Health Organization (2002). http://www.who.int/wer/2002/en/wer7732.pdf
  52. 52.
    World Health Organization (WHO): Buruli ulcer (Mycobacterium ulcerans infection), Fact sheet. Technical report, World Health Organization (2016). http://www.who.int/mediacentre/factsheets/fs199/en/
  53. 53.
    Worldometers: Population (2016). Retrieved from http://www.worldometers.info/world-population/ghana-population/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christina Edholm
    • 1
    • 2
  • Benjamin Levy
    • 3
  • Ash Abebe
    • 4
  • Theresia Marijani
    • 5
  • Scott Le Fevre
    • 6
  • Suzanne Lenhart
    • 1
    • 2
    Email author
  • Abdul-Aziz Yakubu
    • 7
  • Farai Nyabadza
    • 8
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Department of MathematicsScripps CollegeClaremontUSA
  3. 3.Department of MathematicsFitchburg State UniversityFitchburgUSA
  4. 4.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA
  5. 5.Department of MathematicsUniversity of Dar es SalaamDar es SalaamTanzania
  6. 6.Norwich UniversityNorthfieldUSA
  7. 7.Department of MathematicsHoward UniversityWashingtonUSA
  8. 8.Department of MathematicsUniversity of StellenboschStellenboschSouth Africa

Personalised recommendations