Quantitative Models for Infrastructure Restoration After Extreme Events: Network Optimization Meets Scheduling

  • Thomas C. SharkeyEmail author
  • Sarah G. Nurre Pinkley
Part of the Mathematics of Planet Earth book series (MPE, volume 5)


This chapter focuses on the recovery of critical infrastructure systems from large-scale disruptive events and shows how optimization can help guide decision makers in the restoration process. The operation of an infrastructure system is modeled as a network flow problem, which can be used to assess the impact of the disruption on the services provided by the system. To restore the disrupted services, decision makers must schedule the repair operations by allocating scarce resources such as work crews and equipment over time. An overview of the relevant areas of network flows and scheduling is followed by a discussion of how techniques from network optimization and scheduling can be integrated to quantitatively model infrastructure restoration.


Disruption Extreme event Infrastructure Network flow Optimization Restoration Scheduling 


  1. 1.
    Abeliuk, A., Aziz, H., Berbeglia, G., et al.: Interdependent scheduling games. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), New York, pp. 2–9. Elsevier, New York (2016)Google Scholar
  2. 2.
    Abeliuk, A., Berbeglia, G., Van Hentenryck, P.: One-way interdependent games. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, Paris, France, pp. 1519–1520 (2014)Google Scholar
  3. 3.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  4. 4.
    Averbakh, I.: Emergency path restoration problems. Discret. Optim. 9(1), 58–64 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Averbakh, I., Pereira, J.: The flowtime network construction problem. IIE Trans. 44(8), 681–694 (2012)CrossRefGoogle Scholar
  6. 6.
    Averbakh, I., Pereira, J.: Network construction problems with due dates. Eur. J. Oper. Res. 244(3), 715–729 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Baxter, M., Elgindy, T., Ernst, T.A., et al.: Incremental network design with shortest paths. Eur. J. Oper. Res. 238(3), 675–684 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Berktas, N., Kara, B.Y., Karasan, O.E.: Solution methodologies for debris removal in disaster response. EURO J. Comb. Optim. 4(3-4), 403–445 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bienstock, D., Mattia, S.: Using mixed-integer programming to solve power grid blackout problems. Discret. Optim. 4(1), 115–141 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Borraz-Sanchez, C., Bent, R., Backhaus, S., et al.: Convex relaxations for gas expansion planning. INFORMS J. Comput. 28(4), 645–656 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brown, G.O.: The history of the Darcy-Weisbach equation for pipe flow resistance. In: Proceedings of the 150th Anniversary Conference of ASCE, Washington, D.C., USA, pp. 34–43 (2002)Google Scholar
  12. 12.
    Bruneau, M., Chang, S., Eguchi, R., et al.: A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 19(4), 733–752 (2003)CrossRefGoogle Scholar
  13. 13.
    Cavdaroglu, B., Hammel, E., Mitchell, J.E., et al.: Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems. Ann. Oper. Res. 203(1), 279–294 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Çelik, M.: Network restoration and recovery in humanitarian operations: framework, literature review, and research directions. Surv. Oper. Res. Manag. Sci. 21(2), 47–61 (2015)Google Scholar
  15. 15.
    Çelik, M., Ergun, O., Keskinocak, P.: The post-disaster debris clearance problem under incomplete information. Oper. Res. 63(1), 65–85 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Coffrin, C., Van Hentenryck, P.: A linear-programming approximation of AC power flows. INFORMS J. Comput. 26(4), 718–734 (2014)CrossRefGoogle Scholar
  17. 17.
    Coffrin, C., Hijazi, H., Van Hentenryck, P.: The QC relaxation: a theoretical and computational study on optimal power flow. IEEE Trans. Power Syst. 31(4), 3008–3018 (2016)CrossRefGoogle Scholar
  18. 18.
    Coffrin, C., Hijazi, H., Van Hentenryck, P.: Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities. IEEE Trans. Power Syst. 32(5), 3549–3558 (2017)CrossRefGoogle Scholar
  19. 19.
    Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRefGoogle Scholar
  20. 20.
    Engel, K., Kalinowski, T., Savelsbergh, M.W.P.: Incremental network design with minimum spanning trees. J. Graph Algorithms Appl. 21(4), 417–432 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ford, L., Fulkerson, D.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  23. 23.
    Goemans, M.X., Unda, F.: Approximating incremental combinatorial optimization problems. In: Proceedings of APPROX/RANDOM 2017, pp. 1–6. Dagstuhl, Wadern (2017)Google Scholar
  24. 24.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., et al.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Math. Program. Comput. 9(3), 321–367 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kalinowski, T., Matsypura, D., Savelsbergh, M.W.P.: Incremental network design with maximum flows. Eur. J. Oper. Res. 242(1), 51–62 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lavaei, J., Low, S.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)CrossRefGoogle Scholar
  28. 28.
    Lee, E.E., Mitchell, J.E., Wallace, W.A.: Restoration of services in interdependent infrastructure systems: a network flows approach. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(6), 1303–1317 (2007)CrossRefGoogle Scholar
  29. 29.
    Nurre, S.G., Sharkey, T.C.: Integrated network design and scheduling problems with parallel identical machines: complexity results and dispatching rules. Networks 63, 306–326 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nurre, S.G., Cavdaroglu, B., Mitchell, J.E., et al.: Restoring infrastructure systems: an integrated network design and scheduling problem. Eur. J. Oper. Res. 223(3), 794–806 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 4th edn. Springer, New York (2012)CrossRefGoogle Scholar
  32. 32.
    Romo, F., Tomasgard, A., Hellemo, L., et al.: Optimizing the Norwegian natural gas production and transport. Interfaces 39(1), 46–56 (2009)CrossRefGoogle Scholar
  33. 33.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Boston (2005)zbMATHGoogle Scholar
  34. 34.
    Sharkey, T.C., Cavdaroglu, B., Nguyen, H., et al.: Interdependent network restoration: on the value of information-sharing. Eur. J. Oper. Res. 244(1), 309–321 (2015)CrossRefGoogle Scholar
  35. 35.
    Sharkey, T.C., Nurre, S.G., Nguyen, H., et al.: Identification and classification of restoration interdependencies in the wake of Hurricane Sandy. J. Infrastruct. Syst. 22(1), 04015, 007 (2016)Google Scholar
  36. 36.
    Smith, W.: Various optimizers for single-stage production. Naval Res. Log. Q. 3(1-2), 59–66 (1956)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Smith, A.M., Gonzalez, A.D., Due\(\tilde {\mbox{n}}\)as-Osorio, L., et al.: Interdependent network recovery games. Risk Anal. (2017).
  38. 38.
    U.S. Department of Energy: Hurricane Matthew situation reports. Tech. rep., US DOE Office of Electricity Delivery and Energy Reliability, Washington, DC (2016)Google Scholar
  39. 39.
    U.S. Department of Housing and Urban Development: Hurricane Sandy rebuilding strategy. Tech. rep., US HUD Hurricane Sandy Rebuilding Task Force, Washington DC (2013)Google Scholar
  40. 40.
    White House, Office of the Press Secretary: Presidential Policy Directive: critical infrastructure security and resilience. Tech. rep., The White House, Office of the Press Secretary (2013)Google Scholar
  41. 41.
    Williams, G.S., Hazen, A.: Hydraulic Tables. Wiley, New York (1914)Google Scholar
  42. 42.
    Zhang, W., Chung, G., Pierre-Louis, P., et al.: Reclaimed water distribution network design under temporal and spatial growth and demand uncertainties. Environ. Model. Softw. 49, 103–117 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Industrial EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations