Modeling Food Systems

  • Hans G. KaperEmail author
  • Hans Engler
Part of the Mathematics of Planet Earth book series (MPE, volume 5)


When enough food is produced but sizable fractions of the population suffer from malnutrition or are overweight, it is time to get a better understanding of the global food system. This chapter introduces food systems and food security as timely research topics for Mathematics of Planet Earth (MPE).


Food systems Food security Planetary boundaries Social justice Models Data 



Much of the work presented in this chapter was inspired by discussions at the weekly seminars of the SAMSI Working Group on Food Systems during the academic year 2017–2018. The authors thank professor Mary Lou Zeeman (Bowdoin College), who planted the seeds of our interest in food systems and contributed to an earlier draft of the chapter. The authors also thank the anonymous referees of this and an earlier version of the chapter for insightful comments and encouraging remarks.


  1. 1.
    Allen, M.: Planetary boundaries: tangible targets are critical. Nat. Rep. Clim. Chang. 3(10), 114–115 (2009). CrossRefGoogle Scholar
  2. 2.
    Bass, S.: Planetary boundaries: keep off the grass. Nat. Rep. Clim. Chang. 113–114 (2009). CrossRefGoogle Scholar
  3. 3.
    Beddington, J., Asaduzzaman, M., Fernandez, A., et al.: Achieving food security in the face of climate change: summary for policy makers from the commission on sustainable agriculture and climate change. Technical report, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen (2011).
  4. 4.
    Bokhiria, J.B., Fowler, K.R., Jenkins, E.W.: Modeling and optimization for crop portfolio management under limited irrigation strategies. J. Agric. Environ. Sci. 3, 209–237 (2014)Google Scholar
  5. 5.
    Boyer, P., Butault, J.: The food Euro: what food expenses pay for? Letter of the Observatory on formation of prices and margins of food products. FranceAgriMer 1, 6 (2013)Google Scholar
  6. 6.
    Brewer, P.: Planetary boundaries: consider all consequences. Nat. Rep. Clim. Chang., 117–118 (2009). CrossRefGoogle Scholar
  7. 7.
    Canning, P., Rehkamp, S., Waters, A., Etemadnia, H.: The role of fossil fuels in the U.S. food system and the American diet. Technical Report. ERR-224, Department of Agriculture, Economic Research Service, Washington, DC (2017)Google Scholar
  8. 8.
    Canning, P., Weersink, A., Kelly, J.: Farm share of the food dollar: an IO approach for the United States and Canada. Agric. Econ. 47, 505–512 (2016)CrossRefGoogle Scholar
  9. 9.
    Carroll, I.T., Bansal, S.: Livestock market data for modeling disease spread among US cattle. bioRxiv Preprint (2015).
  10. 10.
    Clark, C., Conrad, J.: Natural Resource Economics: Notes and Problems. Cambridge University Press, Cambridge (1997)Google Scholar
  11. 11.
    Costanza, R.: Ecological Economics: The Science and Management of Sustainability. Columbia University Press, New York (1992)Google Scholar
  12. 12.
    Dixon, P.B., Parmenter, B.R.: Computable general equilibrium modelling for policy analysis and forecasting. Handb. Comput. Econ. 1, 3–85 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    European Environmental Agency (EEA): Agriculture.
  14. 14.
    Fair, K.R., Bauch, C.T., Anand, M.: Dynamics of the global wheat trade network and resilience to shocks. Nat. Sci. Rep. 7, 7177 (2017). CrossRefGoogle Scholar
  15. 15.
    Feeding America: Hunger in America.
  16. 16.
    Food and Agriculture Organization (FAO): Food and Agriculture Data.
  17. 17.
    Food and Agriculture Organization (FAO): Information Systems for Food Security and Nutrition.
  18. 18.
    Food and Agriculture Organization (FAO): The state of food insecurity in the world 2014: strengthening the enabling environment for food security and nutrition. United Nations (2015)Google Scholar
  19. 19.
    GAMS Software GmbH.: General Algebraic Modeling System (GAMS), Frechen (2017). URL
  20. 20.
    Gapminder: Gapminder.
  21. 21.
    Garver, J., Goldberg, M.S.: Boundaries and Indicators: Conceptualizing and Measuring Progress Toward an Economy of Right Relationship Constrained by Global Economic Limits, chap. 5, pp. 149–190. Columbia University Press, New York (2015). CrossRefGoogle Scholar
  22. 22.
    Gillig, D., McCarl, B.A.: Introduction to Computable General Equilibrium Model (CGE): Course notes. Technical report, Department of Agricultural Economics, Texas A&M University (2002)Google Scholar
  23. 23.
    Golan, A., Judge, G., Robinson, S.: Recovering information from incomplete or partial multisectoral economic data. Rev. Econ. Stat. LXXVI(3), 541–549 (1994)CrossRefGoogle Scholar
  24. 24.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, third printing, revised and corrected edn. Springer, New York (1990)Google Scholar
  25. 25.
    Guckenheimer, J., Ottino, J.M.: Foundations for complex systems research in the physical sciences and engineering. Technical report, U.S. National Science Foundation, Alexandria (2008)Google Scholar
  26. 26.
    Harrison, W.J., Pearson, K.R.: Computing solutions for large general equilibrium models using GEMPACK. Comput. Econ. 9(2), 83–127 (1996)CrossRefGoogle Scholar
  27. 27.
    Hertel, T.W., Hertel, T.W.: Global Trade Analysis: Modeling and Applications. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  28. 28.
    International Food Policy Research Institute (IFPRI): Agricultural S&T Indicators.
  29. 29.
    Isard, W.: Gravity and Spatial Interaction Models, pp. 243–280. Routledge, New York (2017)CrossRefGoogle Scholar
  30. 30.
    Johns Hopkins University, Center for a Livable Future: Food policy networks.
  31. 31.
    Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)Google Scholar
  32. 32.
    Krugman, P.: Increasing returns and economic geography. J. Polit. Econ. 99(3), 483–499 (1991)CrossRefGoogle Scholar
  33. 33.
    Malthus, T.R.: An essay on the principle of population. Reprint 2004. Edited with an introduction and notes by Geoffrey Gilbert (1798)Google Scholar
  34. 34.
    Meiss, J.D.: Differential Dynamical Systems, second, revised edn. MM22. SIAM, Philadelphia (2017)Google Scholar
  35. 35.
    Melitz, M.: The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 71(6), 1695–1725 (2003)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Miller, R.E., Blair, P.D.: Input-Output Analysis: Foundations and Extensions, 2nd edn. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  37. 37.
    Miller, B.W., Breckheimer, I., McCleary, A.L., Guzmn-Ramirez, L., Caplow, S.C., Jones-Smith, J.C., Walsh, S.J.: Using stylized agent-based models for population-environment research: a case study from the Galápagos Islands. Popul. Environ. 31, 401–426 (2010)CrossRefGoogle Scholar
  38. 38.
    Molden, D.: Planetary boundaries: the devil is in the detail. Nat. Rep. Clim. Chang., 116–117 (2009). CrossRefGoogle Scholar
  39. 39.
    Molina, M.J.: Planetary boundaries: identifying abrupt change. Nat. Rep. Clim. Chang., 115–116 (2009). CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Myers, S.S., Zanobetti, A., Kloog, I., et al.: Rising CO2 threatens human nutrition. Nature 510(7503), 139 (2014)CrossRefGoogle Scholar
  42. 42.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–255 (2003)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ng, M., Fleming, T., Robinson, M., et al.: Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet 384(9945), 766–781 (2014)CrossRefGoogle Scholar
  44. 44.
    Raworth, K.: A safe and just space for humanity: can we live within the doughnut. Oxfam Policy Prac. Clim. Chang. Res. 8(1), 1–26 (2012)Google Scholar
  45. 45.
    Raworth, K.: Why it’s time for ‘Doughnut Economics’ (2014). TEDxAthens
  46. 46.
    Raworth, K.: Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist. Chelsea Green Publishing, White River Junction (2017)Google Scholar
  47. 47.
    Reggiani, A.: Network resilience for transport security: some methodological considerations. Transp. Policy 28, 63–68 (2013)CrossRefGoogle Scholar
  48. 48.
    Rehkamp, S., Canning, P.: Measuring embodied blue water in American diets: An EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018)CrossRefGoogle Scholar
  49. 49.
    Rockström, J., Steffen, W., Noone, K., et al.: A safe operating space for humanity. Nature 461(7263), 472–475 (2009)CrossRefGoogle Scholar
  50. 50.
    Samper, C.: Planetary boundaries: rethinking biodiversity. Nat. Rep. Clim. Chang. 118–119 (2009). CrossRefGoogle Scholar
  51. 51.
    Schlesinger, W.H.: Planetary boundaries: thresholds risk prolonged degradation. Nat. Rep. Clim. Chang. 112–113 (2009). CrossRefGoogle Scholar
  52. 52.
    Smith, V.L.: Relevance of laboratory experiments to testing resource allocation theory. In: Evaluation of Econometric Models, pp. 345–377. Elsevier, Amsterdam (1980)CrossRefGoogle Scholar
  53. 53.
    Sraffa, P., with the collaboration of Maurice H. Dobb (eds.): The Works and Correspondence of David Ricardo, vol. I. Cambridge University Press, Cambridge (1951)Google Scholar
  54. 54.
    Steffen, W., Broadgate, W., Deutsch, L., et al.: The trajectory of the Anthropocene: the great acceleration. Anthropocene Rev. 2(1), 81–98 (2015)CrossRefGoogle Scholar
  55. 55.
    Steffen, W., Richardson, K., Rockström, J., et al.: Planetary boundaries: guiding human development on a changing planet. Science 347(6223), 1259855 (2015)CrossRefGoogle Scholar
  56. 56.
    Tisue, S., Wilensky, U.: NetLogo: A simple environment for modeling complexity. Technical report, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston (2004).
  57. 57.
    Tufte, E.: The Visual Display of Quantitative Information, 213 pp. Graphic Press, Cheshire (1973/2001)Google Scholar
  58. 58.
    UK Government, Department for Environment, Food and Rural Affairs (DEFRA): Food Statistics Pocketbook (2017).
  59. 59.
    United Nations: The Sustainable Development Goals Report, 2017. Technical report, United Nations, New York (2017).
  60. 60.
    United Nations, The European Commission, The Food and Agriculture Organization of the United Nations, The Organisation for Economic Co-operation and Development, The International Monetary Fund, The World Bank Group: System of Environmental–Economic Accounting 2012—Central Framework. United Nations, New York (2014). Google Scholar
  61. 61.
    US Department of Agriculture (USDA): Data.
  62. 62.
    US National Academy of Sciences: A framework for assessing effects of the food system. Technical report, IOM (Institute of Medicine) and NRC (National Research Council), Washington, DC (2015)Google Scholar
  63. 63.
    von Thünen, J.H.: The Isolated State. Perthes, Hamburg (1826). English translation. Pergamon, Oxford (1966)Google Scholar
  64. 64.
    Wiedmann, T.O., Schandl, H., Lenzen, M., et al.: The material footprint of nations. Proc. Natl. Acad. Sci. 112(20), 6271–6276 (2015)CrossRefGoogle Scholar
  65. 65.
  66. 66.
    World Bank: World Bank Open Data.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics and StatisticsGeorgetown UniversityWashington, DCUSA

Personalised recommendations