Advertisement

Developing Methods for Calculating Gas-Dynamic Parameters in Launch Canister During the Missile Launch

  • R. A. PeshkovEmail author
  • A. V. Erpalov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Based on the analysis of various methods for modeling gas-dynamic processes, a methodology has been developed for calculating the main parameters in the launch canister, taking into account the heat exchange processes. The development of the technique includes the choice of physical and mathematical models of gas-dynamic processes in the launch canister, which allow obtaining a stable and convergent solution. The results of FLUENT software package numerical modeling of gas-dynamic processes in the launch canister have been presented, taking into account the heat exchange processes for the given parameters of the heat-shielding coating. The parameters of the MX missile are used as the main parameters for the calculation. Despite a slight increase in the exit time (4%) and the average volume pressure in the launch canister (4–6%), it has been obtained that the effect of heat transfer is increased over time, and for missiles of longer length, it will be more significant. Based on the results obtained, the value of the coefficient taking into account heat transfer was found, and its comparison with known experimental data was made. The obtained coefficient is used to improve the technique on the basis of finding the average volume characteristics in the launch canister. The use of the numerical simulation technique will allow further evaluation of the effect of changes in the parameters of the thermal protection coating and the parameters of the combustion products of the powder pressure accumulator on the dynamics of the missile movement in the canister.

Keywords

Heat exchange Launch canister Numerical simulation Technique Missile launch 

References

  1. 1.
    Konyukhov SN (1997) Minometnyiy start mezhkontinentalnyih ballisticheskih raket (Mortar launched intercontinental ballistic missiles). National Academy of Sciences, Space Agency of Ukraine, Institute of Technical Mechanics, design office “Yuzhnoye”, DnepropetrovskGoogle Scholar
  2. 2.
    Avduevskij VS, Galicejskij BM, Glebov GA (1992) Osnovy teploperedachi v aviacionnoj i raketno-kosmicheskoj tehnike (Fundamentals of heat transfer in aviation and rocket and space technology). Mashinostroenie, MoscowGoogle Scholar
  3. 3.
    JaM Shapiro, Mazing GJu, Prudnikov NE (1966) Teorija raketnyh dvigatelej na tverdom toplive (Theory of solid-fuel rocket engines). Voennoe izdatel’stvo ministerstva oborony SSSR, MoscowGoogle Scholar
  4. 4.
    Afanas’ev EV, Baloban VI, Bobyshev SV, Dobroserdov IL (1998) Strukturno-jelementnyj metod rascheta gazostrujnyh processov (Structural element method for calculating gas jet processes). Matematicheskoe modelirovanie 10(1):31–43Google Scholar
  5. 5.
    Afanas’ev EV, Bobyshev SV, Dobroserdov IL, Sokolova TT (2001) Strukturno-jelementnoe modelirovanie jezhekcionnyh processov pri starte kosmicheskih raket-nositelej (Structural element modeling of Jewish processes at the launch of space launch vehicles). Matematicheskoe modelirovanie 13(7):104–109Google Scholar
  6. 6.
    Korolev AA, Komochkov VA (eds) (2010) Ballistika raketnogo i stvol’nogo oruzhija (Ballistics of rocket and barreled weapons). Izdatel’stvo Volgogradskogo gosudarstvennogo tehnicheskogo universiteta. VolgogradGoogle Scholar
  7. 7.
    Fu D-B, Yu D-J, Zhang Z-Y (2012) Lumped parameter model for concentric canister launcher. J Solid Rocket Technol 35(3):301–305Google Scholar
  8. 8.
    Fu D-B, Yu Y (2013) Simulation of gas flow and additional thrust with missile launching from concentric canister launcher. Proc Inst Mech Eng Part G J Aerosp Eng 227(12):1977–1987.  https://doi.org/10.1177/0954410012464602CrossRefGoogle Scholar
  9. 9.
    Rui S, Xing Y (2009) Comparative studies of interior ballistic performance among several missile eject power systems. J Beijing Univ Aeronaut Astronaut 35(6):766–770Google Scholar
  10. 10.
    Rui S, Xing Y (2010) Numerical simulation of two-phase flow and interior ballistic for missile launching system. Paper presented at the 25th international symposium on ballistics, Beijing University of Aeronautics, Beijing, China, 16–22 May 2010Google Scholar
  11. 11.
    Edquist CT (1990) Prediction of the launch pulse for gas generator launched missiles. J Propul Power 6(6):705–712.  https://doi.org/10.2514/3.23275CrossRefGoogle Scholar
  12. 12.
    Edquist CT, Romine GL (1980) Canister gas dynamics of gas generator launched missiles. Paper presented at the 16th joint propulsion conference, Hartford, CT, USA, 30 June 1980–2 July 1980Google Scholar
  13. 13.
    Hao J-G, Jiang Y, Han S-Y, Liao Q (2007) New dynamic mesh update method and its applications. J Ballist 19(2):88–92Google Scholar
  14. 14.
    Jiang Y, Hao J-G, Fu D-B (2008) 3D unsteady numerical simulation of missile launching. Acta Armamentarii 20(29):911–915Google Scholar
  15. 15.
    Zhai X, Chen Y, Jiang Y (2006) Using dynamic grid to simulate interior trajectory of the launching container. Mod Def Technol 34:24–28Google Scholar
  16. 16.
    Liu Y, Xi A, Liu H (2012) Numerical study of interior trajectory of missile ejection based on mechanics. Paper presented at the 2nd international conference on information science, automation and material system, Changsha, China, 21–22 Apr 2012.  https://doi.org/10.4028/www.scientific.net/AMR.485.616CrossRefGoogle Scholar
  17. 17.
    Liu Y, Xi A (2013) An interior trajectory simulation of the gas-steam missile ejection. J Comput (Finl) 8(5):1321–1326.  https://doi.org/10.4304/jcp.8.5.1321-1326CrossRefGoogle Scholar
  18. 18.
    Peshkov RA, Sidel’nikov RV (2015) Analiz udarno-volnovyh nagruzok na raketu, puskovuju ustanovku i kontejner v processe starta (Analysis of shock-wave loads on the rocket, launcher and container during launch). Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta. Serija “Mashinostroenie” 15(2):81–91Google Scholar
  19. 19.
    Fluent Inc. (2011) FLUENT 14.0 Theory ManualGoogle Scholar
  20. 20.
    Fahrutdinov IH, Kotel’nikov AV (1987) Konstrukcija i proektirovanie raketnyh dvigatelej tverdogo topliva (Design and design of solid-fuel rocket engines). Mashinostroenie, MoscowGoogle Scholar
  21. 21.
    Pavljuk JuS (1996) Ballisticheskoe proektirovanie raket: Uchebnoe posobie (Ballistic racket design: tutorial). Izdatel’stvo Cheljabinskogo gosudarstvennogo tehnicheskogo universiteta, CheljabinskGoogle Scholar
  22. 22.
    Kostin AK, Larionov VV, Mihajlov LI (1979) Teplonaprjazhennost’ dvigatelej vnutrennego sgoranija: Spravochnoe posobie (Thermal intensity of internal combustion engines: a reference manual). Mashinostroenie, LeningradGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations