Advertisement

Enriched 40Ca100MoO4 Single Crystalline Material for Search of Neutrinoless Double Beta Decay

  • A. Alenkov
  • O. Buzanov
  • A. Dosovitskii
  • V. Kazalov
  • V. KornoukhovEmail author
  • A. Mikhlin
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)

Abstract

The search for neutrinoless double beta (0ν2β) decay is one of a key issue in modern experimental physics. A number of such experiments are currently under preparation, among them the AMORE (Advanced Mo-based Rare Process Experiment) experiment, the purpose of which is to search for the 0ν2β decay of the 100Mo isotope using scintillation isotope-enriched calcium molybdate 40Ca100MoO4 crystals as a source, and the detector as well. In the material of the crystal, molybdenum and calcium of natural isotopic composition are replaced by isotopically enriched 100Mo and 40Ca, respectively. The requirements to the quality of 40Ca100MoO4 crystals (high light output and its homogeneity in volume, high transparency for scintillation light, and ultra-low content of radioactive impurities in the crystal material) are extremely stringent. JSC “Fomos-Materials” (Moscow) for the first time developed the technology of growing of scintillation isotope-enriched 40Ca100MoO4 crystals, which makes it possible to manufacture scintillation elements with dimensions of Ø40–55 mm and length up to 50 mm, with their subsequent annealing and machining, which completely satisfies the requirements of the experiment.

Notes

Acknowledgements

We thank the members of the AMoRE Collaboration. This study was supported at its different stages by Federal Science and Innovations Agency of Russian Federation (Federal Aiming Program, contracts 02.513.11.3398 and contract 16.523.11.3013). One of author (VK) was also supported in the framework of the Moscow Engineering Physics Institute Academic Excellence Project (contract 02.a03.21.0005, August 27, 2013).

References

  1. 1.
    F.T. Avignone III, S.R. Elliott, J. Engel, Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80, 481–516 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    W. Rodejohann, Neutrino-less double beta decay and particle physics. Int. J. Mod. Phys. E 20, 833–1930 (2011)CrossRefGoogle Scholar
  3. 3.
    S.M. Bilenky, C. Giunti, Int. J. Mod. Phys. A 30, 1530001 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    J.D. Vergados, H. Ejiri, F. Simkovic. Neutrinoless double beta decay and neutrino mass. arXiv:1612.02924v1 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    C. Enss, D. McCammon, Physical principles of low temperature detectors: ultimate performance limits and current detector capabilities. J. Low Temp. Phys. 151(1), 5–24 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    H. Bhang et al., AMoRE experiment: a search for neutrinoless double beta decay of 100Mo isotope with 40Ca100MoO4 cryogenic scintillation detector. J. Phys Conf. Ser. 375, 042023 (2012)CrossRefGoogle Scholar
  7. 7.
    A.N. Annenkov, O.A. Buzanov, F.A. Danevich et al., Nucl. Instr. Meth. A 584, 334 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Fleischmann A, C. Enss, G. Seidel, Metallic Magnetic Calorimeters Cryogenic Particle Detection (Springer, Berlin, 2005), pp. 151–216Google Scholar
  9. 9.
    W.S. Yoon et al., Fabrication of metallic magnetic calorimeter for radionuclide analysis. J. Low Temp. Phys. 176(5–6), 644–649 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    C.S. Kang, J.A. Jeon, H.S. Jo et al., Supercond. Sci. Technol. 30, 084011 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    G.B. Kim, J.H. Choi, H.S. Jo et al., Novel measurement method of heat and light detection for neutrinoless double beta decay. Astroparticle Phys. 91, 105–112 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    A.N. Shubin, A.N. Gilev, D.B. Kononov et al., New requirements on enriched isotopes for experiments studying neutrinoless double β-decay (GERDA experiment). At. Energ. 101, 588–592 (2006)CrossRefGoogle Scholar
  13. 13.
    V.K. Karandashev, L.B. Bezrukov, V.N. Kornoukhov et al., Analysis of germanium and germanium dioxide samples by mass spectrometry and atomic emission spectroscopy. J. Anal. Chem. 64, 259 (2009)CrossRefGoogle Scholar
  14. 14.
    O.A. Busanov, R.A. Etezov, Yu.M. Gavriljuk et al., Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals. EPJ Web Conf. 65, 03002 (2014)CrossRefGoogle Scholar
  15. 15.
    N.A. Kashcheev, V.A. Dergachev, Elektromagnitnoe razdelenie izotopov i izotopnyi analiz [Electromagnetic Isotope Separation and Isotope Analysis] (Energoatomizdat, Moscow, 1989)Google Scholar
  16. 16.
    V.V. Alenkov, O.A. Buzanov, A.E. Dosovitskii, V.N. Kornoukhov, A.L. Mikhlin, P.S. Moseev, N.D. Khanbekov, Inorg. Mater. 49, 1220–1223 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Bhang, R.S. Boiko, D.M. Chernyak D.M. et al., AMoRE experiment: a search for neutrinoless double beta decay of 100Mo isotope with 40Ca100MoO4 cryogenic scintillation detector. J. Phys. Conf. Ser. 375, 042023 (2012)Google Scholar
  18. 18.
    L.L. Nagornaya, F.A. Danevich, A.M. Dubovik et al., Acta Phys. Pol. A 117, 15 (2010)CrossRefGoogle Scholar
  19. 19.
    D.A. Spassky, V.V. Alenkov, O.A. Buzanov, V.N. Kornoukhov, Molybdate cryogenic scintillators for rare events search experiments. Engineering of scintillation materials and radiation technologies. Springer Proc. Phys. 200 (2017)Google Scholar
  20. 20.
    A.A. Blistanov, Kristally kvantovoi i nelineinoi optiki [Crystals of Quantum and Nonlinear Optics] (MISiS, Moscow, 2007) (in Russian)Google Scholar
  21. 21.
    S. Belogurov, V. Kornoukhov, A. Annenkov et al., IEEE Trans. Nucl. Sci. 52, 1131 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Nina S. Kozlova, Oleg A. Buzanov, Marina B. Bykova, Evgeniya V. Zabelina, Vasily N. Kornoukhov, Anna P. Kozlova, Anastasiya G. Chernyk, Investigation of CaMoO4 single crystals with low residual absorption. Mod. Electron. Mater. 2, 41–44 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Y. Lee, V. Alenkov, L. Ali et al., A study of radioactive contamination of 40Ca100MoO4 crystals for the AMoRE experiment. IEEE Trans. Nucl. Sci. 63 (2016)Google Scholar
  24. 24.
    F.A. Danevich et al., Search for 2 decay of cadmium and tungsten isotopes: final results of the Solotvina experiment. Phys. Rev. C 68, 035501 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Alenkov
    • 1
  • O. Buzanov
    • 1
  • A. Dosovitskii
    • 2
  • V. Kazalov
    • 3
  • V. Kornoukhov
    • 1
    • 4
    Email author
  • A. Mikhlin
    • 2
  1. 1.JSC Fomos-MaterialsMoscowRussia
  2. 2.JSC NeoChemMoscowRussia
  3. 3.Baksan Neutrino Observatory INR RASNeutrinoRussia
  4. 4.NRNU MEPhIMoscowRussia

Personalised recommendations