Advertisement

Garnet Crystal Growth in Non-precious Metal Crucibles

  • O. SidletskiyEmail author
  • P. Arhipov
  • S. Tkachenko
  • Ia. Gerasymov
  • D. Kurtsev
  • V. Jarý
  • R. Kučerková
  • M. Nikl
  • K. Lebbou
  • E. Auffray
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)

Abstract

The work is motivated by the need for cheap garnet-based scintillators for new high energy physics experiments at colliders and medical equipment. During recent years, garnets became among the most studied scintillators due to a drastic enhancement of light yield achieved in (Lu,Y,Gd)3(Al,Ga)5O12:Ce multicomponent systems. Meanwhile, the production process of YAG- and LuAG-based crystals is easier and less expensive compared to the multicomponent garnets. This work addresses the preparation process and the optical and scintillation properties of YAG, YAG:Ce crystals grown in non-precious metal crucibles.

Notes

Acknowledgements

The work was performed in the frame of Crystal Clear Collaboration and is supported by the Marie Skłodowska-Curie Research, Innovation Staff Exchange Project H2020-MSCA-RISE-2014 No. 644260 “INTELUM”. Authors are grateful to COST Action TD1401 “Fast Advanced Scintillator Timing (FAST)” for support of collaboration. Partial support of bilateral mobility project “Scintillation mechanisms in garnet- and perovskite-type crystals fabricated under different conditions” between Academies of Sciences of Ukraine and Czech Republic, and Czech Science Foundation No. 16-15569S project is also acknowledged.

References

  1. 1.
    S. Kurosawa, Y. Shoji, Yu. Yokota, K. Kamada V. Chani, A. Yoshikawa, Czochralski growth of Gd3(Al5−xGax)O12 (GAGG) single crystals and their scintillation properties. J. Cryst. Growth 393, 134–137 (2014)Google Scholar
  2. 2.
    O. Philip, G. Gunow, I. Sjestakova, M. Berheide, E. Durner, Ch. Stoller, N. Cherepy, Scintillation properties of single-crystal and ceramic GGAG(Ce) and ceramic GYGAG(Ce) at temperatures up to 200 °C, in 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA (2015), pp. 1–7Google Scholar
  3. 3.
    O. Sidletskiy, Trends in search for bright mixed scintillators. Phys. Status Solidi A 215, 1701034 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    P. Dorenbos, Directions in scintillation materials research. Nucl. Instrum. Methods Phys. Res. A 486, 191–207 (2002)CrossRefGoogle Scholar
  5. 5.
    E. Villora, S. Arjoca, Single-crystal phosphors for high-brightness white lighting. J. Jpn. Assoc. Cryst. Growth 42, 119–129 (2015)Google Scholar
  6. 6.
    M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B.P. Uberuaga, D.A. Andersson, K.J. McClellan, C.R. Stanek, Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping. Phys. Rev. B 84, 081102 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A. Yoshikawa, Luminescent Detectors and Transformers of Ionizing Radiation, Book of Abstracts (Czech Technical University in Prague, 2018), p. 280Google Scholar
  8. 8.
    S. Nizhankovsky, A. Danko, V. Puzikov, Yu. Savvin, A. Trushkovsky, S. Krivonosov, Optical and luminescence characteristics of YAG:Ce crystals grown by horizontal directed crystallization in reducing gas medium. Funct. Mater. 15, 546–549 (2008)Google Scholar
  9. 9.
    M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt, Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44, 1052–1061 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    J. Houžvička, K. Bartoš, Method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm. (CRYTUR, SPOL, SRO), Patent U.S. 9,499,923 B2 (2016)Google Scholar
  11. 11.
    A. Petrosyan, Crystal growth of laser oxides in the vertical Bridgman configuration. J. Cryst. Growth 139, 372–392 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    S. Nizhankovsky, A. Danko V.M. Puzikov, Yu.N. Savvin, A.G. Trushkovsky, S.I. Krivonogov, Optical and luminescence characteristics of YAG:Ce crystals grown by horizontal directed crystallization in reducing gas medium. Funct. Mater. 15, 546–549 (2008)Google Scholar
  13. 13.
    E. Wiberg, A.F. Holleman, Inorganic Chemistry (Elsevier Science, Amsterdam, 2001), p. 1884Google Scholar
  14. 14.
    E.K. Storms, System Mo-C. Partial composite diagram for C? 58 at.%, in Special Report to the Phase Equilibria Program, American Ceramic Society, Westerville, Ohio (1989)Google Scholar
  15. 15.
    E. Rudy, J.R. Hoffman, System W-C. (A) T-X diagram; (B) detail around the W2C composition, Planseeber. Pulvermet. 15, 174–178 (1967)Google Scholar
  16. 16.
    P. Arhipov, S. Tkachenko, S. Vasiukov, K. Hubenko, Ia. Gerasymov, V. Baumer, A. Puzan, P. Mateychenko, K. Lebbou, O. Sidletskiy, Features of YAG crystal growth under Ar + CO reducing atmosphere. J. Cryst. Growth 449, 104–107 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    S. Nizhankovsky, E. Krivonosov, V. Baranov, A. Budnikov, V. Kanishchev, L. Grin, G. Adonkin, Optical homogeneity of Ti:sapphire crystals grown by horizontal directional solidification. Inorg. Mater. 48, 1111–1114 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Tkachenko P. Arhipov, I. Gerasymov, D. Kurtsev, S. Vasyukov, V. Nesterkina, N. Shiran, P. Mateichenko, O. Sidletskiy, Control of optical properties of YAG crystals by thermal annealing. J. Cryst. Growth. 483, 195–199 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    M. Kulkarni, K. Muthe, N. Rawat, D. Mishra, M. Kakade, S. Ramanathan, S. Gupta, D. Chatt, J. Yakmi, D. Sharma, Carbon doped yttrium aluminum garnet (YAG:C)—a new phosphor for radiation dosimetry. Radiat. Meas. 43, 492–496 (2008)CrossRefGoogle Scholar
  20. 20.
    X. Yang, J. Xu, The optically stimulated luminescence of carbon doped Y3Al5O12 (YAG) crystal. J. Phys. D Appl. Phys. 42(14), 145411 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Ya. Zhydachevskyy, I. Kamińska, M. Glowacki, A. Kilian, S. Ubizskii, P. Bilski, M. Berkowski, K. Fronc, D. Elbaum, A. Suchocki, Photoluminescence and thermoluminescence of the oxygen-deficient YAG, YAP, and YAM phosphors. Acta Physica Polonica A. 133, 977–980 (2018)CrossRefGoogle Scholar
  22. 22.
    D. Kurtsev, O. Sidletskiy, S. Neicheva, V. Bondar, O. Zelenskaya, V. Tarasov, M. Biatov, A. Gektin, LGSO:Ce scintillation crystal optimization by thermal treatment. Mater. Res. Bull. 52, 25–29 (2014)CrossRefGoogle Scholar
  23. 23.
    O. Sidletskiy, P. Arhipov, S. Tkachenko, O. Zelenskaya, S. Vasyukov, F. Moretti, C. Dujardin, Drastic scintillation yield enhancement of YAG:Ce with carbon doping. Phys. Status Solidi A 215, 1800122 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    P. Arhipov, S. Tkachenko, Ia. Gerasymov, O. Sidletskiy, K. Hubenko, S. Vasyukov, N. Shiran, V. Baumer, P. Mateychenko, A. Fedorchenko, Yu. Zorenko, Y. Zhydachevskii, K. Lebbou, M. Korjik, Growth and characterization of large CeAlO3 perovskite crystals. J. Cryst. Growth 430, 116–121, (2015)CrossRefGoogle Scholar
  25. 25.
    M. Nikl, V. Babin, J.A. Mares, K. Kamada, S. Kurosawa, A. Yoshikawa, J. Tous, J. Houzvicka, K. Blazek, The role of cerium variable charge state in the luminescence and scintillation mechanism in complex oxide scintillators: the effect of air annealing. J. Lumin. 169, 539–543 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. Sidletskiy
    • 1
    Email author
  • P. Arhipov
    • 1
  • S. Tkachenko
    • 1
  • Ia. Gerasymov
    • 1
  • D. Kurtsev
    • 1
  • V. Jarý
    • 2
  • R. Kučerková
    • 2
  • M. Nikl
    • 2
  • K. Lebbou
    • 3
  • E. Auffray
    • 4
  1. 1.Institute for Scintillation Materials NAS of UkraineKharkivUkraine
  2. 2.Institute of Physics AS of Czech RepublicPrague 6Czech Republic
  3. 3.Institute of Light and Matter, UMR55306 University Claude Bernard Lyon 1-CNRSVilleurbanne CedexFrance
  4. 4.European Organization for Nuclear ResearchGeneva 23Switzerland

Personalised recommendations