Advertisement

New Properties and Prospects of Hot Intraband Luminescence for Fast timing

  • Sergey I. OmelkovEmail author
  • Vitali Nagirnyi
  • Marco Kirm
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)

Abstract

Recent progress in various fields of scintillator applications has created a high demand for ultrafast timing. One of the perspective scintillation mechanisms for that is hot intraband luminescence (IBL). This is a universal intrinsic luminescence effect that occurs at the time scale of electron-phonon relaxation with characteristic time below 1 ps and is inherent to all condensed matter. It was first discovered by D.I. Vaisburd et al. in 1974, but not yet utilized for any application. Having broad structureless spectrum similar to that of Cherenkov radiation, it does not have excitation energy or excitation density threshold. It is temperature-independent and tolerant to impurities and doping. Although IBL yield is too low (maximum value currently detected is 33 ph/MeV in CsI) to operate as a scintillation itself, it can be combined with some other fast scintillation mechanism (like crossluminescence) to significantly improve time resolution by providing prompt photons for precise time-tagging of a scintillation event. The IBL yield can potentially be increased by engineering material band structure aimed at increasing the number of possible highly allowed radiative intraband transitions and their probability. The combined ultrafast scintillation mechanism can be applied for example to achieve the goal of 10-ps resolution in TOF-PET or to mitigate pileup rejection problem in calorimeters for high energy physics. For other potential applications like hard x-ray imaging at a GHz frame rate, IBL can be used as a single scintillation mechanism provided brighter IBL emitting materials will be found and high-efficiency detectors with high time resolution will be used. From the latter perspective, superconductive nanowire single-photon detectors are a very promising emerging technology, demonstrating <3 ps time resolution and quantum efficiency close to 100%. With those detectors, IBL can potentially provide picosecond time resolution for scintillation.

Notes

Acknowledgements

This work was funded by Estonian Research Council (projects PUT1081, PRG111, IUT2-26). A partial financial support from the Estonian Centre of Excellence TK141 by the EU through the European Regional Development Fund (TK141, project No. 2014–2020.4.01.15-0011) is gratefully acknowledged. The work is inspired by Crystal Clear Collaboration and performed in the frame of COST Action TD1401 “FAST”.

References

  1. 1.
    P. Lecoq, IEEE Trans. Radiat. Plasma. Med. Sci. 1, 473 (2017)CrossRefGoogle Scholar
  2. 2.
    S.R. Cherry, T. Jones, J.S. Karp, J. Qi, W.W. Moses, R.D. Badawi, J. Nucl. Med. 59(1), 3 (2017)CrossRefGoogle Scholar
  3. 3.
    J.W. Cates, C.S. Levin, Phys. Med. Biol. 63(11), 115011 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, J. Instrum. 11(08), P08008 (2016)CrossRefGoogle Scholar
  5. 5.
    P. Lecoq, M. Korzhik, A. Vasiliev, Nuclear Science. IEEE Trans. 61(1), 229 (2014)ADSGoogle Scholar
  6. 6.
    S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Phys. Med. Biol. 61(7), 2802 (2016)CrossRefGoogle Scholar
  7. 7.
    S.E. Brunner, D.R. Schaart, Phys. Med. Biol. 62(11), 4421 (2017)CrossRefGoogle Scholar
  8. 8.
    S.I. Omelkov, V. Nagirnyi, S. Gundacker, D.A. Spassky, E. Auffray, P. Lecoq, M. Kirm, J Lumin 198, 260 (2018)CrossRefGoogle Scholar
  9. 9.
    S. Korpar, R. Dolenec, P. Križan, R. Pestotnik, A. Stanovnik, Phys. Procedia 37, 1531 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S.E. Brunner, L. Gruber, J. Marton, K. Suzuki, A. Hirtl, I.E.E.E. Trans, Nucl. Sci. 61(1), 443 (2014)CrossRefGoogle Scholar
  11. 11.
    B. Ujvari, in Budapest-Debrecen Meetings (2017). URL https://indico.cern.ch/event/683371/
  12. 12.
    Z. Wang, C.L. Morris, J.S. Kapustinsky, K. Kwiatkowski, S.N. Luo, Rev. Sci. Instrum. 83(10), 10E510 (2012)CrossRefGoogle Scholar
  13. 13.
    D.I. Vaisburd, B.N. Semin, E. Tavanov, Izv. Nauk AS USSR. Phys. Ser. 38, 1281 (1974)Google Scholar
  14. 14.
    B. Kovalchuk, V. Kremnev, G. Mesyats, Doklady Academii nauk USSR 191, 76 (1970)Google Scholar
  15. 15.
    D. Vaisburd, S. Kharitonova, Russ. Phys. J. 40(11), 1037 (1997)CrossRefGoogle Scholar
  16. 16.
    D.I. Vaisburd, B.N. Semin, E.G. Tavanov, S.B. Matlis, I.N. Balychev, G.I. Gering, High-energy solid-state electronics (Novosibirsk, Izdatel’stvo Nauka, 1982). In RussianGoogle Scholar
  17. 17.
    D. Vaisburd, Properties of Ionic Crystals at High Ionization Levels. Dr. Sci. Hab. Thesis. (Tomsk, 1983). In RussianGoogle Scholar
  18. 18.
    A. Lushchik, C. Lushchik, M. Kirm, V. Nagirnyi, F. Savikhin, E. Vasil’chenko, Nucl. Inst. Methods Phys. Res., B 250, 330 (2006)Google Scholar
  19. 19.
    F. Savikhin, V. Vasilchenko, Phys. Solid State 39(4), 535 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    H. Huang, Q. Li, X. Lu, Y. Qian, Y. Wu, R.T. Williams, Physica status solidi (RRL) - Rapid Research Letters 10(10), 762 (2016)Google Scholar
  21. 21.
    R. Deich, M. Karklina, L. Nagli, Solid State Commun. 71(10), 859 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    R. Deich, M. Abdrakhmanov, Nucl. Inst. Methods Phys. Res., B 65, 525 (1992)Google Scholar
  23. 23.
    R. Deich, Radiation-stimulated processes in wide-gap crystals, facilitated by free charge carriers. Dr. Sci. Hab. Thesis. (Salaspils, 1990), pp. 179–203. In RussianGoogle Scholar
  24. 24.
    V.N. Makhov, Phys. Scr. 89(4), 044010 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    K.U. Ibragimov, F.A. Savikhin, Fizika Tverdogo Tela 35(6), 1474 (1993)Google Scholar
  26. 26.
    M. Kirm, A. Lushchik, C. Lushchik, A. Nepomnyashikh, F. Savikhin, Radiat. Meas. 33(5), 515 (2001)CrossRefGoogle Scholar
  27. 27.
    I. Tokbergenov, E. Feldbach, M. Kerikmäe, A. Lushchik, V. Nagirnyi, T. Nurakhmetov, F. Savikhin, E. Vasil’chenko, Radiat. Eff. Defects Solids 150(1–4), 103 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    A. Lushchik, F. Savikhin, I. Tokbergenov, J. Lumin. 102, 44 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Lushchik, F. Savikhin, I. Tokbergenov, Radiat. Eff. & Defects Solids 158(1–6), 305 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    F. Savikhin, M. Kerikmäe, E. Feldbach, A. Lushchik, D. Onishchik, D. Rakhimov, I. Tokbergenov, Phys. Status Solidi (c) 2(1), 252 (2005)Google Scholar
  31. 31.
    M. Pidzyrailo, V. Vistovskyy, A. Voloshinovskii, G. Stryganyuk, O. Bovgyra, Y. Chornodolskyy, Radiat. Meas. 42(4–5), 869 (2007)CrossRefGoogle Scholar
  32. 32.
    V. Nagirnyi, E. Feldbach, L. Jönsson, M. Kirm, A. Lushchik, C. Lushchik, L.L. Nagornaya, V.D. Ryzhikov, F. Savikhin, G. Svensson, I.A. Tupitsina, Radiat. Meas. 29(3–4), 247 (1998)CrossRefGoogle Scholar
  33. 33.
    V. Nagirnyi, E. Feldbach, L. Jönsson, M. Kirm, A. Kotlov, A. Lushchik, L. Nagornaya, F. Savikhin, G. Svensson, Radiat. Meas. 33(5), 601 (2001)CrossRefGoogle Scholar
  34. 34.
    V. Baryshnikov, T. Kolesnikova, Phys. Solid State 47(10), 1847 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    V. Baryshnikov, T. Kolesnikova, Opt. Spectrosc. 95(4), 594 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    V. Baryshnikov, T. Kolesnikova, S. Dorokhov, Phys. Solid State 39(2), 250 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    S.I. Omelkov, V. Nagirnyi, A.N. Vasil’ev, M. Kirm, J. Lumin. 176, 309 (2016)CrossRefGoogle Scholar
  38. 38.
    D.I. Vaisburd, P.A. Palyanov, B.N. Semin, O.M. Shumskiy, Proc. USSR Acad. Sci. 336, 39 (1994)Google Scholar
  39. 39.
    A.N. Vasil’ev, R.V. Kirkin, Phys. Wave Phenom. 23(3), 186 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, C. Piemonte, Nucl. Instrum. Methods Phys. Res., Sect A (2017)Google Scholar
  41. 41.
    S.I. Omelkov, V. Nagirnyi, E. Feldbach, R.M. Turtos, E. Auffray, M. Kirm, P. Lecoq, J. Lumin. 191, 61 (2017)CrossRefGoogle Scholar
  42. 42.
    P. Dorenbos, R. Visser, C. van Eijk, J. Valbis, N. Khaidukov, in Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 1991)Google Scholar
  43. 43.
    A. Jamil, T. Ziegler, P. Hufschmidt, G. Li, L. Lupin-Jimenez, T. Michel, I. Ostrovskiy, F. Retière, J. Schneider, M. Wagenpfeil, J.B. Albert, G. Anton, I.J. Arnquist, I. Badhrees, P. Barbeau, D. Beck, V. Belov, J.P. Brodsky, E. Brown, T. Brunner, A. Burenkov, G.F. Cao, L. Cao, W.R. Cen, C. Chambers, S.A. Charlebois, M. Chiu, B. Cleveland, M. Coon, A. Craycraft, W. Cree, M. Côté, J. Dalmasson, T. Daniels, S.J. Daugherty, J. Daughhetee, S. Delaquis, A.D. Mesrobian-Kabakian, R. DeVoe, T. Didberidze, J. Dilling, Y.Y. Ding, M.J. Dolinski, A. Dragone, J. Echevers, L. Fabris, D. Fairbank, W. Fairbank, J. Farine, S. Feyzbakhsh, R. Fontaine, D. Fudenberg, G. Gallina, G. Giacomini, R. Gornea, G. Gratta, E.V. Hansen, D. Harris, M. Hasan, M. Heffner, E.W. Hoppe, A. House, M. Hughes, J. Hößl, Y. Ito, A. Iverson, M. Jewell, X.S. Jiang, A. Karelin, L.J. Kaufman, T. Koffas, S. Kravitz, R. Krücken, A. Kuchenkov, K.S. Kumar, Y. Lan, D.S. Leonard, S. Li, Z. Li, C. Licciardi, Y.H. Lin, R. MacLellan, B. Mong, D. Moore, K. Murray, R.J. Newby, Z. Ning, O. Njoya, F. Nolet, K. Odgers, A. Odian, M. Oriunno, J.L. Orrell, C.T. Overman, G.S. Ortega, S. Parent, A. Piepke, A. Pocar, J.F. Pratte, D. Qiu, V. Radeka, E. Raguzin, T. Rao, S. Rescia, A. Robinson, T. Rossignol, P.C. Rowson, N. Roy, R. Saldanha, S. Sangiorgio, S. Schmidt, A. Schubert, D. Sinclair, K. Skarpaas, A.K. Soma, G. St-Hilaire, V. Stekhanov, T. Stiegler, X.L. Sun, M. Tarka, J. Todd, T. Tolba, R. Tsang, T. Tsang, F. Vachon, V. Veeraraghavan, G. Visser, J.L. Vuilleumier, Q. Wang, M. Weber, W. Wei, L.J. Wen, U. Wichoski, G. Wrede, S.X. Wu, W.H. Wu, Q. Xia, L. Yang, Y.R. Yen, O. Zeldovich, X. Zhang, J. Zhao, Y. Zhou, (2018). URL http://arxiv.org/abs/1806.02220v1
  44. 44.
    M.G. Brik, A.M. Srivastava, J. Electrochem. Soc. 159(6), J212 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Gerasimova, S. Dziarzhytski, T. Malyi, H. Redlin, in 4th International Conference on Ultrafast Structural Dynamics (2017), p. 50Google Scholar
  46. 46.
    B.A. Korzh, Q.Y. Zhao, S. Frasca, J.P. Allmaras, T.M. Autry, E.A. Bersin, M. Colangelo, G.M. Crouch, A.E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J.D. Rezac, M.J. Stevens, E.E. Wollman, D. Zhu, P.D. Hale, K.L. Silverman, R.P. Mirin, S.W. Nam, M.D. Shaw, K.K. Berggren, (2018). URL http://arxiv.org/abs/1804.06839

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergey I. Omelkov
    • 1
    Email author
  • Vitali Nagirnyi
    • 1
  • Marco Kirm
    • 1
  1. 1.Institute of Physics University of TartuTartuEstonia

Personalised recommendations