Fluctuations of Track Structure and Energy Resolution of Scintillators

  • A. Gektin
  • Andrei N. Vasil’evEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)


The problem of intrinsic energy resolution of scintillators is studied in terms of the distribution of concentration of electrons around holes in the track, probability of photon emission from regions with high electron-hole concentration and probability that photons are emitted in the shaping time interval from regions with low concentration. The paper shows how fluctuations of the measured response is connected with the fluctuations in the track.



This work was done in frames of Crystal Clear Collaboration.


  1. 1.
    A.V. Gektin, A.N. Vasil’ev, Funct. Mater. 24, 621 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Dorenbos, J. de Haas, C. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42, 2190–2202 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    M. Moszynski, A. Nassalski, A. Syntfeld-Kazuch, L. Swiderski, T. Szczecsniak, Energy resolution of scintillation detectors—new observations. IEEE Trans. Nucl. Sci. 55, 1062–1068 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Moszyński, A. Syntfeld-Każuch, L. Swiderski, M. Grodzicka, J. Iwanowska, P. Sibczyński, T. Szczęśniak, Energy resolution of scintillation detectors. Nucl. Instrum. Methods Phys. Res. A 805, 25–35 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S. Gridin, D.R. Onken, R.T. Williams, L. Swiderski, Z. Mianowska, A. Syntfeld-Kazuch, M. Moszynski, V. Gayshan, S. Vasiukov, A. Gektin, Pulse shape analysis of individual gamma events—correlation to energy resolution and the possibility of its improvement. J. Appl. Phys. 124, 154504 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Valentine, B.D. Rooney, J. Li, The light yield nonproportionality component of scintillator energy resolution. IEEE Trans. Nucl. Sci. 45, 512–517 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Payne, N.J. Cherepy, G. Hull, J.D. Valentine, W.W. Moses, W.-S. Choong, Nonproportionality of scintillator detectors: theory and experiment. IEEE Trans. Nucl. Sci. 56, 2506–2512 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Payne, W.W. Moses, S. Sheets, L. Ahle, N.J. Cherepy, B. Sturm, S. Dazeley, G. Bizarri, W.-S. Choong, Nonproportionality of scintillator detectors: theory and experiment II. IEEE Trans. Nucl. Sci. 58, 3392–3402 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Payne, S. Hunter, L. Ahle, N.J. Cherepy, E. Swanberg, Nonproportionality of scintillator detectors. III. Temperature dependence studies. IEEE Trans. Nucl. Sci. 61, 2771–2777 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    S.A. Payne, Nonproportionality of scintillator detectors. IV. Resolution contribution from delta-rays. IEEE Trans. Nucl. Sci. 62, 372–380 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, Inorganic Scintillators for Detector Systems (Springer, 2006)Google Scholar
  12. 12.
    A. Vasil’ev, in Engineering of Scintillation Materials and Radiation Technologies, vol. 200. Springer Proceedings in Physics (Springer, 2017), pp. 3–34Google Scholar
  13. 13.
    F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Yield, variance and spatial distribution of electron–hole pairs in CsI. Nucl. Instrum. Methods Phys. Res. A 652, 564–567 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A. Vasil’ev, Fast processes in scintillators, in Engineering of Scintillation Materials and Radiation Technologies (Springer, this issue)Google Scholar
  15. 15.
    M. Kirm, V. Nagirnyi, E. Feldbach, M. De Grazia, B. Carre, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond vacuum ultraviolet pulses. Phys. Rev. B 79, 233103 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Excitation density, diffusion drift, and proportionality in scintillators. Phys. Status Solidi (b) 248, 426–438 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Lempicki, A.J. Wojtowicz, E. Berman, Fundamental limits of scintillator performance. Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Scintillation MaterialsKharkivUkraine
  2. 2.Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations