Thermal Neutron Detector Based on LaOBr:Ce/LiF

  • L. FiserovaEmail author
  • J. Janda
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)


The work follows up the previous studies which proved the group of lanthanide oxybromides (LnOBr) to be very sensitive to the detection of heavy particles and therefore suitable for the detection of neutrons when mixed with appropriate conversion material. From the group of LnOBr, lanthanum oxybromide activated by cerium (LaOBr:Ce) showed to be the most sensitive for detection of a charged particle, e.g. alpha particles. This led to the construction on novel small thermal neutron probe based on the mixture of LaOBr:Ce and lithium-6 fluoride fixed on the thin optical carrier and optically coupled on 1″ PMT. The detection efficiency and effective n/γ separation were partially successful using pulse shape discrimination. The results were compared to the reference detection system based on standard ZnS:Ag/LiF mixture.



This project TE01020445 was provided with the financial support of the Technology Agency of the Czech Republic.


  1. 1.
    V.V. Kuzminov, V.V. Alekseenko, I.R. Barabanov, Some features and results of thermal neutron background measurements with the ZnS(Ag)+6LiF scintillation detector. Nucl. Instrum. Methods Phys. Res. A 841, 156–161 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    K. Wilhelm, J. Nattress, I. Jovanovic, Development and operation of a +LiF:ZnS(Ag)-scintillating plastic capture-gated detector. Nucl. Instrum. Methods Phys. Res. A 842, 54–61 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Mosset, A. Stoykov, U. Greuter, A. Gromov, M. Hildebrandt, T. Panzner, N. Schlumpf, A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics. Nucl. Instrum. Methods Phys. Res. A 845, 494–498 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    A. Stoykov, J.B. Mosset, U. Greuter, M. Hildebrandt, N. Schlumpf, A SiPM-based ZnS:6LiF scintillation neutron detector. Nucl. Instrum. Methods Phys. Res. A 787, 361–366 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    S.D. Kiff, N. Bowden, J. Lund, D. Reyna, Neutron detection and identification using ZnS:Ag/6LiF in segmented antineutrino detectors. Nucl. Instrum. Methods Phys. Res. A 652(1), 412–416 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    T. Nakamura, E.M. Schooneveld, N.J. Rhodes, M. Katagiri, K. Sakasai, K. Soyama, Evaluation of the performance of a fiber-coded neutron detector with a ZnS/10B2O3 ceramic scintillator. Nucl. Instrum. Methods Phys. Res. A 600(1), 164–166 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C.L. Wang, L. Gou, J.M. Zaleski, D.L. Friesel, ZnS quantum dot based nanocomposite scintillators for thermal neutron detection. Nucl. Instrum. Methods Phys. Res. A 622(1), 186–190 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    S.R. Rahangdale, U.A. Palikundwar, S.P. Wankhede, B. Dhabekar, S. Kadam, S.V. Moharil, Luminescence in LiCaAlF6:Eu, La phosphor. J. Lumin 178, 446–450 (2016)CrossRefGoogle Scholar
  9. 9.
    H.B. Bhandari, S.R. Miller, J. Glodo, V.V. Nagarkar, Structured GdI3:Ce scintillators for X-ray and neutron imaging (NSS/MIC, Seoul, 2013)Google Scholar
  10. 10.
    M.D. Birowosuto, Novel gamma-ray and thermal-neutron scintillators: search for high-light-yield and fast response materials (IOS Press, Amsterdam, 2007)Google Scholar
  11. 11.
    K. Kamada, K. Hishinuma, S. Kurosawa, Y. Shoji, J. Pejchal, Y. Ohashi, Y. Yokota, A. Yoshikawa, Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection. Opt. Mater. 50, 71–75 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Carturan, T. Marchi, G. Maggioni, F. Gramegna, M. Degerlier, M. Cinausero, M. D. Palma, A. Quaranta. Thermal neutron detection by entrapping 6LiF nanocrystals in siloxane scintillators. J. Phys.: Conf. Ser. 620 (2015)Google Scholar
  13. 13.
    A.N. Mabe, J.D. Auxier, M.J. Urffer, S.A. Young, D. Penumadu, G.K. Schweitzer, L.F. Miller, Thin film polymer composite scintillators for thermal neutron detection. J. Compos. (2013)Google Scholar
  14. 14.
    L. Fiserova, J. Janda, Thermal neutron detection using lanthanide oxybromides, in LumDeTr 2018 Conference (Prague, 2018)Google Scholar
  15. 15.
    W.M. Yen, J. Weber, Inorganic Phosphors: Compositions, Preparation and Optical Properties (CRC Press, 2004)Google Scholar
  16. 16.
    N.P. Zaitseva, A.M. Glenn, A.N. Mabe, M.L. Carman, C.R. Hurlbut, J.W. Inman, S.A. Payne, Recent developments in plastic scintillators with pulse shape discrimination. Nucl. Instrum. Methods Phys. Res. A 889, 97–104 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    C.S. Sosa, M. Flaska, S.A. Pozzi, Comparison of analog and digital pulse-shape-discrimination systems. Nucl. Instrum. Methods Phys. Res. A 826, 72–79 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Barton, Decay characteristics of inorganic scintillators. J. Phys. E 11(12), 1173–1178 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    K. Yang, P.R. Menge, V. Ouspenski, Li co-doped NaI: Tl—a large volume neutron-gamma scintillator with exceptional pulse shape discrimination. IEEE Trans. Nucl. Sci. 64(8), 2406–2413 (2017)Google Scholar
  20. 20.
    Y.D. Eagleman, E. Bourret-Courchesne, S.E. Derenzo, Room-temperature scintillation properties of cerium-doped REOX (RE=Y, La, Gd, and Lu; X=F, Cl, Br, and I). J. Lumin. 131(4), 669–675 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NUVIA a.s.TrebicCzech Republic
  2. 2.UOPZHN, University of DefenceVyskovCzech Republic

Personalised recommendations