Transient Phenomena in Scintillation Materials

  • G. TamulaitisEmail author
  • S. Nargelas
  • A. Vaitkevičius
  • M. Lucchini
  • E. Auffray
  • A. Fedorov
  • V. Mechinsky
  • M. Korjik
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)


Time resolution becomes an increasingly important property of the scintillators to be exploited in radiation detectors for coming high-luminosity high-energy physics experiments and medical imaging applications. Multicomponent scintillators enable purposeful design of scintillation properties and, consequently, are attractive for fast radiation detection but suffer for the emission delay due to trapping of nonequilibrium carriers. Therefore, novel measurement techniques are required to characterize the timing properties for purposeful improvement of the scintillators. Here, the capabilities of the differential optical absorption technique, exploited in subpicosecond domain in pump and probe configuration, are introduced and the results obtained by application of this technique for studying the carrier dynamics in two prospective scintillators, garnet-type Gd3Al2Ga3O12 (GAGG) doped by cerium and codoped by magnesium and Ce-doped oxyorthosilicates LSO and LYSO, are presented. The importance of electron trapping for the timing properties of these scintillators is revealed.



The research has been carried out in line with the targets of the Crystal Clear Collaboration and was partially supported by COST Action TD1401 “Fast Advanced Scintillator Timing (FAST)”. The research at Vilnius University was supported by EU Social Fund grant 09.3.3-LMT-K-712-01-0013 via the Lithuanian Research Council. Authors thank Dr. O. Sidletskiy for providing nominally undoped GAGG.


  1. 1.
    P. Lecoq, M. Korzhik, A. Vasiliev, Can transient phenomena help improving time resolution in scintillators. IEEE Trans. Nucl. Sci. 61, 229–234 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    D.R. Schaart, S. Seifert, R. Vinke, H.T. Van Dam, P. Dendooven, H. Löhner, F.J. Beekman, LaBr3:Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys. Med. Biol. 55, 179–189 (2010)CrossRefGoogle Scholar
  3. 3.
    M.V. Nemallapudi, S. Gundacker, P. Lecoq, E. Auffray, A. Ferri, A. Gola, C. Piemonte, Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca. Phys. Med. Biol. 60, 4635–4649 (2015)CrossRefGoogle Scholar
  4. 4.
    J.W. Cates, C.S. Levin, Advances in coincidence time resolution for PET. Phys. Med. Biol. 61, 2255–2264 (2016)CrossRefGoogle Scholar
  5. 5.
    D.N. Ter Weele, D.R. Schaart, P. Dorenbos, Comparative study of Co-doped and non Co-doped LSO:Ce and LYSO:Ce scintillators for TOF-PET. IEEE Trans. Nucl. Sci. 62, 727–731 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    G. Tamulaitis, A. Vaitkevičius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nucl. Inst. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 870, 25–29 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S.I. Omelkov, V. Nagirnyi, A.N. Vasiliev, M. Kirm, New features of hot intraband luminescence for fast timing. J. Lumin. 176, 309–317 (2016)CrossRefGoogle Scholar
  8. 8.
    O. Viagin, A. Masalov, I. Bespalova, O. Zelenskaya, V. Tarasov, V. Seminko, L. Voloshina, Y. Zorenko, Y. Malyukin, Luminescent properties of composite scintillators based on PPO and o-POPOP doped SiO2 xerogel matrices. J. Lumin. 179, 178–182 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61, 2802–2837 (2016)CrossRefGoogle Scholar
  10. 10.
    D.W. Cooke, K.J. McClellan, B.L. Bennett, J.M. Roper, M.T. Whittaker, R.E. Muenchausen, R.C. Sze, Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5. J. Appl. Phys. 88, 7360–7362 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    P. Dorenbos, Electronic structure and optical properties of the lanthanide activated RE3(Al1−xGax)5O12 (RE = Gd, Y, Lu) garnet compounds. J. Lumin. 134, 310–318 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 3, 463–481 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Spassky, A. Vasil’ev, S. Vielhauer, O. Sidletskiy, O. Voloshyna, A. Belsky, Composition effect in luminescence properties of Y(NbxTa1−x)O4 mixed crystals. Opt. Mater. (Amst.) 80, 247–252 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    E. Auffray, R. Augulis, A. Fedorov, G. Dosovitskiy, L. Grigorjeva, V. Gulbinas, M. Koschan, M. Lucchini, C. Melcher, S. Nargelas, G. Tamulaitis, A. Vaitkevičius, A. Zolotarjovs, M. Korzhik, Excitation transfer engineering in ce-doped oxide crystalline scintillators by codoping with alkali-earth ions. Phys. Status Solidi Appl. Mater. Sci. 215, 1–10 (2018)Google Scholar
  15. 15.
    S. Gundacker, R.M. Turtos, E. Auffray, P. Lecoq, Precise rise and decay time measurements of inorganic scintillators by means of X-ray and 511 keV excitation. Nucl. Inst. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 891, 42–52 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. (Amst.) 35, 2480–2485 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Yoshikawa, Y. Fujimoto, A. Yamaji, S. Kurosawa, J. Pejchal, M. Sugiyama, S. Wakahara, Y. Futami, Y. Yokota, K. Kamada, K. Yubuta, T. Shishido, M. Nikl, Crystal growth and characterization of Ce:Gd3(Ga, Al)5O12 single crystal using floating zone method in different O2 partial pressure. Opt. Mater. (Amst.) 35, 1882–1886 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M.T. Lucchini, S. Gundacker, P. Lecoq, A. Benaglia, M. Nikl, K. Kamada, A. Yoshikawa, E. Auffray, Timing capabilities of garnet crystals for detection of high energy charged particles. Nucl. Inst. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 852, 1–9 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutsumi, Y. Fujimoto, A. Fukabori, A. Yoshikawa, Crystal growth and scintillation properties of ce single crystals. IEEE Trans. Nucl. Sci. 59, 2112–2115 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    H. Suzuki, T.A. Tombrello, C.L. Melcher, J.S. Schweitzer, UV and gamma-ray excited luminescence of cerium-doped rare earth oxyorthosilicates. Nucl. Inst. Methods Phys. Res. A 320, 263–272 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    L. Pidol, A. Kahn-Harari, B. Viana, E. Virey, B. Ferrand, P. Dorenbos, J.T.M. De Haas, C.W.E. Van Eijk, High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals. IEEE Trans. Nucl. Sci. 51, 1084–1087 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. Tamulaitis
    • 1
    Email author
  • S. Nargelas
    • 1
  • A. Vaitkevičius
    • 1
  • M. Lucchini
    • 2
  • E. Auffray
    • 2
  • A. Fedorov
    • 3
  • V. Mechinsky
    • 3
  • M. Korjik
    • 3
  1. 1.Institute of Photonics and NanotechnologyVilnius UniversityVilniusLithuania
  2. 2.CERNGenevaSwitzerland
  3. 3.Institute for Nuclear Problems of Belarus State UniversityMinskBelarus

Personalised recommendations