Advertisement

Development of a Submillimeter Portable Gamma-Ray Imaging Detector, Based on a GAGG:Ce—Silicon Photomultiplier Array

  • S. DavidEmail author
  • I. Kandarakis
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)

Abstract

In this study we present the development of a gamma-ray detector based on 1 mm pixel Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillators and a silicon photomultiplier array (ArraySL-4) for possible applications in medical imaging detectors (with focus in PET applications) as well as in personal gamma radiation monitoring applications (with focus on 137Cs radioisotope recognition). A 12 × 12 matrix of pixellated scintillators is coupled to a 4 × 4 pixel elements of a SIPM array covering an active area of 13.4 mm2. Experimental evaluation was carried out with 22Na and 137Cs radioactive sources and the parameters studied were intrinsic spatial resolution, energy resolution and peak-to-valley ratio. ArraySL-4 is a commercially available, 4 × 4 array detector covering an active area of 13.4 mm2. The GAGG:Ce scintillator array used in this study has 1 × 1 × 10 mm3 pixel size elements with 0.1 mm thickness white BaSO4 reflector material between the crystals. A symmetric resistive charge division matrix was applied reducing array’s 16 outputs to 4 position signals. A Field Programmable Gate Array (FPGA) Spartan 6 LX150T was used for triggering and signal processing of the signal pulses digitized using free running Analog to Digital Converters. Raw images and horizontal profiles of the 12 × 12 GAGG:Ce scintillator array produced under 511 keV and 662 keV excitation are illustrated. Moreover, the energy spectra obtained with 22Na and 137Cs radioactive sources are shown. All GAGG:Ce central pixels were separated in the 2-dimensional position histograms providing submillimeter intrinsic spatial resolution with an average peak-to-valley (P/V) ratio of 1.75 for 511 keV and P/V ratio 1.85 for 662 keV. The energy resolution was 16.9% for 511 keV and 14% for 662 keV. Those encouraging results, prove that this system could build up to a compact miniature 137Cs spectrometer (with 2D isotope mapping capability) for homeland security applications as well as can be used in small animal imaging PET detector systems.

Notes

Acknowledgements

This research is implemented through IKY scholarships programme and co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the action entitled” Reinforcement of Postdoctoral Researchers”, in the framework of the Operational Programme” Human Resources Development Program, Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) 2014–2020.

We would like to thanks Prof. S. Majewski who has provided us the GAGG:Ce matrix as well as Dr. L. Fysikopoulos and Dr. M. Georgiou for their contribution in read out signal processing and front end electronics.

References

  1. 1.
    W. Chaiphaksa, P. Limkitjaroenporn, H.J. Kim, J. Kaewkhao, The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG:Ce and CaMoO4 scintillators. Prog. Nucl. Energy 92, 48–53 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka et al., Performance of cerium-doped Gd3Al2G.A3O12 (GAGG:Ce) scintillator. Nucl. Instrum. Methods Phys. Res. A 712, 34–40 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl et al., 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J. Cryst. Growth 52, 88–90 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    M. Yoneyama, J. Kataoka, M. Arimoto, T. Masuda, M. Yoshino, K. Kamada, A. Yoshikawa, H. Sato, Y. Usuki, Evaluation of GAGG: Ce scintillators for future space applications. JINST 13, P02023 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    M. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc. Equip. A 816, 176–183 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    M.T. Lucchinia, O. Buganov, E. Auffray, P. Bohacek, M. Korjik, D. Kozlov, S. Nargelas et al., Measurement of non-equilibrium carriers dynamics in Ce-doped YAG, LuAG and GAGG crystals with and without Mg-codoping. J. Lumin. 194, 1–7 (2018)CrossRefGoogle Scholar
  7. 7.
    S. Yamamoto, K. Kuroda, M. Senda, Scintillator selection for MR-compatible gamma detectors. IEEE Trans. Nucl. Sci. 50(5), 1683–1685 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    S. Yamamoto, H. Watabe, Y. Kanai, K. Kato, J. Hatazawa et al., Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system. Nucl. Instrum. Methods Phys. Res. A. 703, 183–189 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J.Y. Yeom, S. Yamamoto, S.E. Derenzo, V.C. Spanoudaki, K. Kamada, T. Endo et al., First performance results of Ce:GAGG scintillation crystals with silicon photomultipliers. IEEE Trans. Nucl. Sci. 60(2), 988–992 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    T. Kato, J. Kataoka, T. Nakamori, T. Miura, H. Matsuda, A. Kishimoto et al., A novel gamma-ray detector with submillimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG crystals. Nucl. Instr. and Meth. Phys. Res. A 699, 235–241 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S. Yamamoto, J.Y. Yeom, K. Kamada, T. Endo, C.S. Levin, Development of an ultrahigh resolution block detector based on 0.4 mm pixel Ce:GAGG scintillators and a silicon photomultiplier array. IEEE Trans. Nucl. Sci. 60(6), 4582–4587 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Georgiou, S. David, E. Fysikopoulos, G. Loudos, Development of a SIPM based gamma-ray imager using a Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator array, in IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. M21–M48 (2013)Google Scholar
  13. 13.
    S. David, M. Georgiou, E. Fysikopoulos, G. Loudos, Evaluation of a SIPM array coupled to a Gd3Al2Ga3O12: Ce (GAGG:Ce) discrete scintillator. Phys. Med. 31, 763–766 (2015)CrossRefGoogle Scholar
  14. 14.
    J.H. Kim, K.H. Park, K.S. Joo, Development of compact and real-time radiation detector based on SiPM for gamma-ray spectroscopy. JINST 13, P07018 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    J.H. Kim, K.H. Park, K.S. Joo, Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment. Nucl. Eng. Technol. 50, 801–805 (2018)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    V. Popov, Matrix output device readout system. U.S. Patent 6,747,263 (2004)Google Scholar
  18. 18.
    V. Popov, S. Majewski, B. Welch, A novel readout concept for multianode photomultiplier tubes with pad matrix anode layout. Nucl. Instrum. Methods A. 567, 319–322 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    V. Popov, S. Majewski, A.G. Weisenberger, Readout electronics for multianode photomultiplier tubes with pad matrix anode layout. IEEE Nucl. Sci. Conf. R 3, 2156–2159 (2003)Google Scholar
  20. 20.
    S. David, M. Georgiou, E. Fysikopoulos, G. Loudos, Comparison of three resistor network division circuits for the readout of 4 × 4 pixel SiPM arrays. Nucl. Instrum. Methods Phys. Res. A 702, 121–125 (2013)CrossRefGoogle Scholar
  21. 21.
    12-Bit Octal-Channel ADC Family Up to 65MSPS (Texas Instruments, Dallas, TX, USA, 2008)Google Scholar
  22. 22.
    E. Fysikopoulos, G. Loudos, M. Georgiou, S. David, G. Matsopoulos, A Spartan 6 FPGA-based data acquisition system for dedicated imagers in nuclear medicine. Meas. Sci. Technol. 23(12), 125403 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    E. Pratiwi, H.T. Leem, J.H. Park, Y. Choi, S. Yamamoto, K. Kamada, A. Yoshikawa, J.Y. Yeom, Performance of a 0.4 mm pixelated Ce:GAGG block detector with digital silicon photomultiplier. IEEE Trans. Radiat. Plasma Med. Sci. 1, 30–35 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of West AtticaAthensGreece

Personalised recommendations