Advertisement

Neutron Cross Section Measurements with Diamond Detectors

  • E. Griesmayer
  • P. KavriginEmail author
  • C. Weiss
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)

Abstract

Diamond is one of the most robust, versatile and radiation tolerant material for use in beam diagnostics with a wide range of applications in beam instrumentation. Diamond detectors are successfully used with charged particles, photons and neutrons. They are used as neutron monitors using two different measurement techniques. In the case of the measurements with thermal neutrons, a neutron converter is used. Fast neutrons directly interact with carbon nuclei of the diamond detector, so the detector simultaneously acts as a sample and as a sensor. Single-crystal diamond detectors were used in the measurement performed at the Van de Graaff facility of EC-JRC, Geel, Belgium. A dedicated method of the ionization current pulse-shape analysis allowed to measure the cross section of 13C(n, α0)10Be reaction relatively to 12C(n, α0)9Be reaction. This method is based on the unique property of sCVD diamond sensors that the signal shape of the detector current is determined by the initial ionization profile. It allows discrimination between different types of interactions in the detector and a background rejection. In the measurement presented in this report the pulse-shape analysis method was used to obtain the spectra of the two nuclear reactions of interest in order to calculate the cross sections. This pulse-shape analysis method is especially relevant for neutron diagnostics in harsh radiation environments, e.g. fission and fusion reactors. It allows the separation of the neutron spectrum from the background, and it is particularly useful in neutron flux monitoring and neutron spectroscopy.

References

  1. 1.
    H. Frais-Kölbl, E. Griesmayer et al., A fast low-noise charged-particle CVD diamond detector. IEEE Trans. Nucl. Sci. 51, 3833 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    H. Pernegger, S. Roe, P. Weilhammer, V. Eremin, H. Frais-Kölbl, E. Griesmayer et al., Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique. J. Appl. Phys. 97, 073704 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    D. Husson et al., Neutron irradiation of CVD diamond samples for tracking detectors. Nucl. Instrum. Methods Phys. Res. A 388, 421–426 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    D. Meier et al., Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC. Nucl. Instrum. Methods Phys. Res. A 426, 173–180 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    P. Kavrigin, P. Finocchiaro, E. Griesmayer, E. Jericha, A. Pappalardo, C. Weiss, Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors. Nucl. Instrum. Methods Phys. Res. A 795, 88–91 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    C. Weiss, A CVD diamond detector for (n, α) cross-section measurements. Ph.D. thesis. TU Wien (2014)Google Scholar
  7. 7.
    M. Pillon, M. Angelone, A. Krasa, A.J.M. Plompen, P. Schillebeeckx, M.L. Sergi, Experimental response functions of a single-crystal diamond detector for 5–20.5 MeV neutrons. Nucl. Instrum. Methods Phys. Res. A 640, 185–191 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C. Weiss, E. Griesmayer, C. Guerrero, S. Altstadt, J. Andrzejewski et al., A new CVD diamond mosaic-detector for (n, α) cross-section measurements at the n_TOF experiment at CERN. Nucl. Instrum. Methods Phys. Res. A 732, 190–194 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    P. Kavrigin, F. Belloni, H. Frais-Kölbl, E. Griesmayer, A.J.M. Plompen, P. Schillebeeckx, C. Weiss, The 13C(n, a0)10Be cross section at 14.3 MeV and 17.0 MeV neutron energy. EPJ Web Conf. 146, 11036 (2017)CrossRefGoogle Scholar
  10. 10.
    C. Weiss, H. Frais-Kölbl, E. Griesmayer, P. Kavrigin, Ionization signals from diamond detectors in fast-neutron fields. Eur. Phys. J. A 52, 269 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    S. Agostinelli et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    D. Schlegel, TARGET user’s manual (PTB, Braunschweig, Germany, 2005)Google Scholar
  13. 13.
    Z.G. Ge et al., The updated version of Chinese evaluated nuclear data library (CENDL-3.1). J. Kor. Phys. Soc. 59, 1052–1056 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Pillon, M. Angelone, A. Krasa, A.J.M. Plompen, P. Schillebeeckx, M.L. Sergi, Measurement of neutron reaction cross sections in carbon using a single crystal diamond detector. AIP Conf. Proc. 1412, 121 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Meija et al., Isotopic compositions of the elements. Pure Appl. Chem. 88, 293 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Sudbrock et al., Cross sections for the formation of long-lived radionuclides 10Be, 26Al and 36Cl in 14.6 MeV neutron induced reactions determined via accelerator mass spectrometry (AMS). Radiochim. Acta. 88, 829–832 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CIVIDEC Instrumentation GmbHViennaAustria

Personalised recommendations