Advertisement

Application of Scintillation Detectors in Cosmic Experiments

  • A. F. IyudinEmail author
  • S. I. Svertilov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)

Abstract

Scintillation detectors based on organic plastic or inorganic scintillators are widely used in modern space physics and cosmic experiments. We reviewed different detection techniques, optical and physical characteristics of scintillators, light collection at the coupling with different type of photo-sensors. Important cosmic experiments in the past, as well as current state of art for the development of astro-particle and gamma-ray experiments, aimed for search of the new astrophysics, new states of matter, neutrino oscillations, are considered.

Keywords

Scintillator Satellite Cosmic rays Detector 

References

  1. 1.
    W. Röntgen, Ueber eine neue Art von Strahlen. Vorläufige Mitteilung, in Aus den Sitzungsberichten der Würzburger Physik.-medic. Gesellschaft Würzburg (1895), pp. 137–147Google Scholar
  2. 2.
    W. Crookes, The emanation of radium. Proc. Roy. Soc. London 71, 405–408 (1903)CrossRefGoogle Scholar
  3. 3.
    S.C. Curran, W.R. Baker, A photoelectric alpha particle detector, in U.S. Atomic Energy Commission Rpt. MDDC 1296, 17 Nov 1944 (declassified 23 Sept 1947); J.W. Coltman, F.-H. Marshall, Photomultiplier radiation detector, Nucleonics 1, 58–64 (1947)Google Scholar
  4. 4.
    R. Hofstadter, Alkali halide scintillation counters. Phys. Rev. 74(1), 100–101 (1948)ADSCrossRefGoogle Scholar
  5. 5.
    C.L. Melcher, Perspectives on the future development of new scintillators. NIM A 537, 6–14 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    (a) S. Derenzo, M. Boswell, M. Weber, K. Brennan, Scintillation properties (2016). http://scintillator.lbl.gov; (b) Scintillation products. http://www.detectors.saintgobain.com/uploadedFiles/Sgdetectors/Documents/Brochures/Organics-Brochure.pdf; (c) Scintillation products. http://www.eljentechnology.com/
  7. 7.
    (a) T. Yanagida, Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B 94, 75 (2018); (b) C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasil’ev, A. Yoshikawa, R.-Y. Zhu, Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65 (2018); (c) J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R. H. Hawrami, J. Tower, K.S. Shah, New developments in scintillators for security applications. Phys. Proc. 90, 285–290 (2017); (d) N.J. Cherepy, Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. Rep. LLNL-PROC-676780, Lawrence Livermore Natl. Lab. (2015); (e) W.W. Moses Current trends in scintillator detectors and materials. NIMPRA, 487, 123–128 (2002); (f) P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems (Springer, Berlin, 2017), p. 408Google Scholar
  8. 8.
    G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, Hoboken, 2010), ISBN: 978-0470131480Google Scholar
  9. 9.
    J.B. Birks, Theory and Practice of Scintillation Counting (Pergamon Press, Oxford, 1964)Google Scholar
  10. 10.
    (a) H. Tokuno et al., Nucl. Instrum. Methods A 676, 54 (2012); J. Abraham et al., [Pierre Auger Collab.], Nucl. Instrum. Methods A 620, 227 (2010); (b) M. Aglietta et al., (LVD Collab.), Proc. 27th ICRC, Hamburg, 3, 1093 (2001)Google Scholar
  11. 11.
    M. Aguilar, J. Alcaraz, J. Allaby et al., The alpha magnetic spectrometer (AMS) on the international space station: part I—results from the test flight on the space shuttle. Phys. Rep. 366, 331–405 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    P. Picozza, A.M. Galper, G. Castellini et al., PAMELA—a payload for antimatter matter exploration and light-nuclei astrophysics. Astropart. Phys. 27, 296–315 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    W.B. Atwood, A.A. Abdo, M. Ackermann et al., Astrophys. J. 697, 1071–1102 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    C. Winkler, T.J.L. Courvoisier, G. Di Cocco et al., Astron. Astrophys. 411, L1–L6 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Tavani, G. Barbiellini, A. Argan et al., Astron. Astrophys. 502, 995–1013 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. de Angelis, V. Tatischeff, I.A. Grenier, J. McEnery, M. Mallamaci, M. Tavani, U. Oberlack, L. Hanlon et al., Science with e-ASTROGAM: a space mission for MeV-GeV gamma-ray astrophysics. J. High Energy Astrophys. 19, 1–106 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    G. Stratta, R. Ciolfi, L. Amati et al., THESEUS: a key space mission concept for multi-messenger astrophysics. Adv. Sp. Res. 62, 662–682 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    H. Bethe, J. Ashkin, in Experimental Nuclear Physics, ed. by E. Segré (Wiley, New York, 1953), p. 253Google Scholar
  19. 19.
    V. Schönfelder, H.J.M. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A.J.M. Deerenberg, R. Diehl, A. von Dordrecht, J.W. den Herder, W. Hermsen, R.M. Kippen, L.M. Kuiper, G.G. Lichti, J.A. Lockwood, J.R. Macri, M.L. McConnell, D. Morris, R. Much, J.M. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A.W. Strong, B.N. Swanenburg, B. Taylor, C. de Vries, C. Winkler, Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the compton gamma-ray observatory. Astrophys. J. Suppl. Ser. 86, 657–692 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    E.C. Stone, C.M.S. Cohen, W.R. Cook, A.C. Cummings, B. Gauld, B. Kecman, R.A. Leske, R.A. Mewaldt, M.R. Thayer, B.L. Dougherty, R.L. Grumm, B.D. Milliken, R.G. Radocinski, M.E. Wiedenbeck, E.R. Christian, S. Shuman, H. Trexel, T.T. von Rosenvinge, W.R. Binns, D.J. Crary, P. Dowkontt, J. Epstein, P.L. Hink, J. Klarmann, M. Lijowski, M.A. Olevitch, The cosmic ray isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86, 285–356 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    N. Zaitseva, B.L. Rupert, I. PaweLczak, A. Glenn, H.P. Martinez, L. Carman, M. Faust, N. Cherepy, S. Payne, Plastic scintillators with efficient neutron/gamma pulse shape discrimination. NIM A 668, 88–93 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    N. Zaitseva, A. Glenn, L. Carman, H.P. Martinez, R. Hatarik, H. Klapper, S. Payne, Scintillation properties of solution-grown trans-stilbene single crystals. NIM A 789, 8–15 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    H. Tokuno, Y. Tameda, M. Takeda et al., New air fluorescence detectors employed in the telescope array experiment. NIM A 676, 54 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Abraham, P. Abreu, M. Aglietta et al., The fluorescence detector of the Pierre Auger observatory. NIM A 620, 227 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    R. Mussa for the Pierre Auger Collaboration, G. Ciaccio, Observation of ELVES at the Pierre Auger observatory. Eur. Phys. J. Plus. 127, 94 (2012)Google Scholar
  26. 26.
    W.D. Arnett, J.N. Bahcall, R.P. Kirshner, S.E. Woosley, Supernova 1987A. Ann. Rev. Astron. Astrophys. 27, 629–700 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Takahashi, T. Tanimori, K. Miyano, M. Yamada, E.W. Beier, L.R. Feldscher, S.B. Kim, A.K. Mann, F.M. Newcomer, R. Van, W. Zhang, B.G. Cortez, Observation of a neutrino burst from the Supernova SN1987A. Phys. Rev. Lett. 58, 1490–1493 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    R.M. Bionta, G. Blewitt, C.B. Bratton, et al., Observation of a neutrino burst in coincidence with supernova 1987A in the large magellanic cloud. Phys. Rev. Lett. 58, 1494–1496 (1987). ISSN: 0031-9007Google Scholar
  29. 29.
    E.N. Alekseev, L.N. Alekseeva, V.I. Volchenko, I.V. Krivosheina, Possible detection of neutrino signal on 23 February 1987 at the Baksan underground scintillation telescope of the institute of nuclear research. Sov. J. Exp. Theor. Phys. Lett. 45, 589–592 (1987)ADSGoogle Scholar
  30. 30.
    V.L. Dadykin, G.T. Zatsepin, O.G. Ryazhskaya, From the current literature: events detected by underground detectors on February 23, 1987“. Sov. Phys. Uspekhi 32, 459–468 (1989). (in Russian)ADSCrossRefGoogle Scholar
  31. 31.
    A. Owens, Scintillators on interplanetary space missions, in Talk given at 9th International Conference on Inorganic Scintillators and their Applications (SCINT 2007), Wake Forest University, Winston-Salem, NC, USA, 4–8 June 2007Google Scholar
  32. 32.
    X. Wu et al., PANGU: a high resolution gamma-ray space telescope. Proc. SPIE Int. Soc. Opt. Society, 9144 (2014)Google Scholar
  33. 33.
    R.S. Saunders, R.E. Arvidson, G.D. Badhwar, W.V. Boynton, P.R. Christensen, F.A. Cucinotta, W.C. Feldman, R.G. Gibbs, C. Kloss Jr., M.R. Landano, R.A. Mase, G.W. McSmith, M.A. Meyer, I.G. Mitrofanov, G.D. Pace, J.J. Plaut, W.P. Sidney, D.A. Spencer, T.W. Thompson, C.J. Zeitlin, 2001 Mars Odyssey mission summary. Space Sci. Rev. 110, 1–36 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    J.O. Goldsten, E.A. Rhodes, W.V. Boynton et al., The messenger gamma-ray and neutron spectrometer. Space Sci. Rev. 131, 339–391 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    K. Pinkau, Die Messung solarer und atmosphaerischer Neutronen. Zeitschrift Naturforschung A 21, 2100–2101 (1966)Google Scholar
  36. 36.
    A.F. Iyudin, V.V. Bogomolov, V.I. Galkin et al., Instruments to study fast neutrons fluxes in the upper atmosphere with the use of high-altitude balloons. Adv. Space Res. 56, 2073–2079 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    V.B. Brudanin, Element-loaded organic scintillators for neutron and neutrino physics. Phys. Part. Nuclei 6, 69 (2001)Google Scholar
  38. 38.
    V.D. Kuznetsov, L.M. Zelenyi, I.V. Zimovets et al., The Sun and heliosphere explorer—the interhelioprobe mission. Geomag. Aeron. 56, 781–841 (2016)CrossRefGoogle Scholar
  39. 39.
    C. Furetta, Handbook of Thermoluminescence (World Scientific Publishing Co., 2010)Google Scholar
  40. 40.
    R.J. Ginther, New cerium activated scintillating glasses. IRE Trans. Nucl. Sci. 7, 28–31 (1960)CrossRefGoogle Scholar
  41. 41.
    P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems (Springer, Berlin, 2017), p. 408CrossRefGoogle Scholar
  42. 42.
    J. Glodo, R. Hawrami, K.S. Shah, Development of Cs2LiYCl6 scintillator. J. Cryst. Growth 379, 73–78 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    E. van Loef, J. Glodo, W.M. Higgins, K.S. Shah, I.E.E.E. Trans, Nucl. Sci. 52, 1819 (2005)CrossRefGoogle Scholar
  44. 44.
    J. Glodo, R. Hawrami, E. van Loef, W. Higgins, U. Shirwadkar, K.S. Shah. Dual gamma neutron detection with Cs 2 LiLaCl 6, in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI, ed. by R.B. James, L.A. Franks, A. Burger, Proc. of SPIE 7449, 74490E-1 (2009)Google Scholar
  45. 45.
    D.S. McGregor, Materials for gamma-ray spectrometers: inorganic scintillators. Ann. Rev. Mater. Res. 35 (2018)Google Scholar
  46. 46.
    L.E. Peterson, R.L. Howard, Gamma-ray astronomy in space in the 50 keV to 3 MeV region. IRE Trans. Nucl. Sci. NS-8(4), 21 (1961)CrossRefGoogle Scholar
  47. 47.
    W.L. Kraushaar, G.W. Clark, G.P. Garmire, R. Borken, P. Higbie, C. Leong, T. Thorsos, High-energy cosmic gamma-ray observations from the OSO-3 satellite. Astrophys. J. 177, 341–363 (1972)ADSCrossRefGoogle Scholar
  48. 48.
    E.L. Chupp, D.J. Forrest, P.R. Higbie, A.N. Suri, C. Tsai, P.P. Dunphy, Solar gamma ray lines observed during the solar activity of August 2 to August 11, 1972. Nature 241, 333 (1973)ADSCrossRefGoogle Scholar
  49. 49.
    A.J. Dean, L. Fan, K. Byard, A. Goldwurm, C.J. Hall, Radioactivity induced background noise in space-borne astronomical gamma-ray telescopes employing inorganic scintillation spectrometers. Exp. Astron. 1(1), 35–45 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    N. Gehrels, Instrumental background in gamma-ray spectrometers flown in low Earth orbit. Nucl. Instrum. Meth. Phys. Res. A 313, 513–528 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Coded aperture imaging in X- and gamma-ray astronomy. Space Sci. Rev. 45, 349–403 (1987)ADSCrossRefGoogle Scholar
  52. 52.
    P. Ubertini, F. Lebrun, G. Di Cocco et al., IBIS: the imager on-board integral. Astron. Astrophys. 411, L131–L139 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    N. Gehrels, C.E. Fichtel, G.J. Fishman, J.D. Kurfess, V. Schönfelder, The compton gamma ray observatory. Sci. Am. 269, 68–77 (1993)CrossRefGoogle Scholar
  54. 54.
    C.E. Fichtel, R.C. Hartman, D.A. Kniffen, D.J. Thompson, G.F. Bignami, H. Ögelman, M.E. Özel, T. Tuemer, High-energy gamma-ray results from the second small astronomy satellite. Astrophys. J. 198, 163–182 (1975)ADSCrossRefGoogle Scholar
  55. 55.
    G.F. Bignami, G. Boella, J.J. Burger et al., The COS-B experiment for gamma-ray astronomy. Space Sci. Instrum. 1, 245–268 (1975)ADSGoogle Scholar
  56. 56.
    D.J. Thompson, D.L. Bertsch, C.E. Fichtel et al., Calibration of the energetic gamma-ray experiment telescope (EGRET) for the compton gamma-ray observatory. Astrophys. J. Suppl. Ser. 86, 629–656 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    J. Angle, E. Aprile, F. Arneodo et al., Nucl. Phys. B, Proc. Suppl. 173, 117–120 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    E. Aprile, A. Curioni, K.L. Giboni, M. Kobayashi, U.G. Oberlack, S. Zhang, Nucl. Instrum. Methods Phys. Res., Sect. A 593, 414–425 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    S.E. Boggs, The advanced compton telescope mission. New Astron. Rev. 50, 604–607 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    J. Greiner, K. Mannheim, F. Aharonian et al., GRIPS—gamma-ray imaging, polarimetry and spectroscopy. Exp. Astron. 34, 551–582 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    P.F. Bloser, T. Sharma, J.S. Legere, C.M. Bancroft, M.L. McConnell, J.M. Ryan, A.M. Wright, The advanced scintillator compton telescope (ASCOT) balloon project. Proc. SPIE 9905, 7 (2016)Google Scholar
  62. 62.
    E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel, High-energy-resolution scintillator: Ce3+ activated LaBr 3. Appl. Phys. Let. 79, 1573–1575 (2001)Google Scholar
  63. 63.
    W.M. Higgins, A. Churilov, E. van Loef, J. Glodo, M. Squillante, K. Shah, Crystal growth of large diameter LaBr 3:Ce and CeBr 3. J. Cryst. Growth. 310, 2085–2089 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    H.D. Kim, G.S. Cho, H.J. Kim, Characteristics of a stilbene scintillation crystal in a neutron spectrometer. Radiat. Measur. 58, 133–137 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    C. Matei, F.J. Hambsch, S. Oberstedt, Proton light output function and neutron efficiency of a p-terphenyl detector using a 252Cf source. NIM A 676, 135–139 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    F. Lei, A.J. Dean, G.L. Hills, Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309 (1997)Google Scholar
  67. 67.
    T. Kamae, V. Andersson, M. Arimoto, M. Axelsson, C.M. Bettolo, C.-I. Björnsson, G. Bogaert, P. Carlson, W. Craig, T. Ekeberg, O. Engdegård, Y. Fukazawa, S. Gunji, L. Hjalmarsdotter, B. Iwan, Y. Kanai, J. Kataoka, N. Kawai, J. Kazejev, M. Kiss, W. Klamra, S. Larsson, G. Madejski, T. Mizuno, J. Ng, M. Pearce, F. Ryde, M. Suhonen, H. Tajima, H. Takahashi, T. Takahashi, T. Tanaka, T. Thurston, M. Ueno, G. Varner, K. Yamamoto, Y. Yamashita, T. Ylinen, H. Yoshida, PoGOLite—a high sensitivity balloon-borne soft gamma-ray polarimeter. Astropart. Phys. 30, 72–84 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    R.W. Klebesadel, I.B. Strong, R.A. Olson, Observations of gamma-ray bursts of cosmic origin. Astrophys. J. Lett. 85, L182 (1973)Google Scholar
  69. 69.
    E. Costa, M. Feroci, F. Frontera, et al., IAUC # 6572 (1997)Google Scholar
  70. 70.
    E. Costa, F. Frontera, J. Heise, M. Feroci, J. in’t Zand, F. Fiore, M.N. Cinti, D. Dal Fiume, L. Nicastro, M. Orlandini, et al., Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783 (1997)Google Scholar
  71. 71.
    Towards a network of GRB detecting nanosatellites. https://asd.gsfc.nasa.gov/conferences/grb_nanosats/logistics.html

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State University by Lomonosov M.VMoscowRussia
  2. 2.Faculty of PhysicsMoscow State University by Lomonosov M.VMoscowRussia

Personalised recommendations