State of the Art of Scintillation Crystal Growth Methods

  • V. TaranyukEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)


This paper presents the overview of modern technical and technological solutions aimed at increasing the efficiency of scintillation crystal growth methods, as one of the main component influenced on the cost of scintillator. On the examples of obtaining classic and new scintillators, the current trends in the development of classical and new technologies, allowing to grow both large and small crystals, are considered.


  1. 1.
    P.W. Bridgman, Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc and tin. Proc. Am. Acad. 60, 305–383 (1925)CrossRefGoogle Scholar
  2. 2.
    D.C. Stockbarger, The production of large size single crystals of lithium fluoride. Rev. Sci. Instrum. 7(3), 133–137 (1936)ADSCrossRefGoogle Scholar
  3. 3.
    G. Muller, P. Rudolph, Crystal growth from the melt, encyclopedia of materials: science and technology (2001), pp. 1866–1873CrossRefGoogle Scholar
  4. 4.
    R. Triboulet, Crystal growth by traveling heater method, in Handbook of Crystal Growth (2015), pp. 459–504CrossRefGoogle Scholar
  5. 5.
    A.G. Petrosyan, K.L. Ovanesyan, R.V. Sargsyan, G.O. Shirinyan, D. Abler, E. Auffray, P. Lecoq, C. Dujardin, C. Pedrini, Bridgman growth and site occupation in LuAG: Ce scintillator crystals. J. Cryst. Growth 312, 3136–3142 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    W.M. Higgins, A. Churilov, E. van Loef, J. Glodo, M. Squillante, K. Shah, Crystal growth of large diameter LaBr 3:Ce and CeBr3. J. Cryst. Growth 310, 2085–2089 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    L.A. Boatner, J.O. Ramey, J.A. Kolopus, R. Hawrami, W.M. Higgins, E. van Loef, J. Glodo, K.S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N.J. Cherepy, S.A. Payne, Bridgman growth of large SrI2: Eu single crystals: a high-performance scintillator for radiation detection applications. J. Cryst. Growth 379, 63–68 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    V. Taranyuk, A. Gektin, E. Galenin, O. Sidletskiy, N. Nazarenko, A. Kolesnikov, S. Vasyukov, Investigation of the growth parameters for SrI2:Eu2+ crystal growth by VGF method, in Proceedings of 18th International Conference on Crystal Growth and Epitaxy, Nagoya, Japan, 7–12 Aug 2016Google Scholar
  9. 9.
    Y. Yokota, S. Kurosawa, K. Nishimoto, K. Kamada, A. Yoshikawa, Growth of Eu:SrI2 bulk crystals and their scintillation properties. J. Cryst. Growth 401, 343–346 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    W.C. Holton, R.K. Watts, R.D. Stinedurf, Synthesis and melt growth of doped ZnSe crystals. J. Cryst. Growth 6, 97–100 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    H. Hermon, M. Schieber et al., Analysis of CZT crystals and detectors grown in Russia and Ukraine by the high-pressure Bridgman method. J. Electron. Mater. 28, 688 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    E.D. Bourret-Courchesne, G.A. Bizarri, R. Borade, G. Gundiah, E.C. Samulon, Z. Yan, S.E. Derenzo, Crystal growth and characterization of alkali-earth halide scintillators. J. Cryst. Growth 352, 78–83 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    U. Debska, W. Giriat, H.R. Harrison, D.R. Yoder-Short, RF-heated Bridgman growth of (ZnSe) 1 − x (MnSe) x in self-sealing graphite crucibles. J. Cryst. Growth 70, 399–402 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    U.N. Roy, A. Burger, R.B. James, Growth of CdZnTe crystals by the traveling heater method. J. Cryst. Growth n379, 57–62 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A.C. Lindsey, Y. Wu, M. Zhuravleva, M. Loyd, M. Koschan, C.L. Melcher, Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method. J. Cryst. Growth 470, 20–26 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    V. Taranyuk, A. Gektin, O. Sidletskiy, N. Nazarenko, A. Kolesnikov, SrI2(Eu) scintillation crystal growth by multi-ampoule single-zone VGF technique, in Proceedings of 6th European Conference on Crystal Growth, Varna, Bulgaria 16–20 Sept 2018Google Scholar
  17. 17.
    M.E. Wells, M.B. Groff, Design and development of a transparent Bridgman furnace. Cryst. Growth Space Relat. Opt. Diagn. 1557, 71–77 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    A.S. Tremsin, D. Perrodin, A.S. Losko, S.C. Vogel, M.A.M. Bourke, G.A. Bizarri, E.D. Bourret, Real-time crystal growth visualization and quantification by energy-resolved neutron imaging. Sci. Rep. 7(46275), 1–10 (2017)Google Scholar
  19. 19.
    A.S. Tremsin, M.G. Makowska, D. Perrodin, T. Shalapska, I.V. Khodyuk et al., In situ diagnostics of the crystal-growth process through neutron imaging: application to scintillators. J. Appl. Crystallogr. 49, 743–755 (2016)CrossRefGoogle Scholar
  20. 20.
    A.S. Tremsin et al., In-situ observation of phase separation during growth of Cs2LiLaBr 6:Ce crystals using energy-resolved neutron imaging. Cryst. Growth Des. 17(12), 6372–6381 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Czochralski, Zs. Phys. Chem. 2, 219 (1917)Google Scholar
  22. 22.
    S. Kyropoulos, Ein Verfahren zur Herstellung grosser Kristalle. Anorg. Z. Chem. 154, 308–311 (1926). [in German]CrossRefGoogle Scholar
  23. 23.
    A. Gektin, V. Goriletskiy, B. Zaslavskiy, Continuous growth of large halide scintillation crystals, in Crystal Growth Technology, ed. by H.J. Scheel, P. Capper (Wiley-VCH, Hoboken, 2008), pp. 353–378Google Scholar
  24. 24.
    Z. Yan, T. Shalapska, E.D. Bourret, Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu. J. Cryst. Growth 435, 42–45 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    E. Galenin, O. Sidletskiy, C. Dujardin, A. Getkin, Growth and characterization of SrI2: Eu crystals fabricated by the Czochralski method. IEEE Trans. Nucl. Sci. 65(8), 2174–2177 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    YuA Borovlev, N.V. Ivannikova, V.N. Shlegel, YaV Vasiliev, V.A. Gusev, Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique. J. Cryst. Growth 229, 305–311 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    K. Kamada, Y. Shoji, V.V. Kochurikhin et al., Growth and scintillation properties of 3 inch diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. J. Cryst. Growth 452, 81–84 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    S. Tkachenko, P. Arhipov, I. Gerasymov et al., Control of optical properties of YAG crystals by thermal annealing. J. Cryst. Growth 483, 195–199 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    J. Houvika, K. Barto, Method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm. U.S. Patent No. 9,499,923Google Scholar
  30. 30.
    E.E. Lomonova, V.V. Osiko, Growth of zirconia crystals by skull melting technique, in Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England, 2003), p. 461Google Scholar
  31. 31.
    X.W. Jiayue, Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process. J. Rare Earths 27, 971–974 (2009)CrossRefGoogle Scholar
  32. 32.
    O.Y. Danko, G.T. Kanishev et al., A furnace for preparing of raw material for single crystal growth. Patent UA No 460 (in Ukrainian)Google Scholar
  33. 33.
    V. Taranyuk, Skull method—an alternative scintillation crystals growth technique for laboratory and industrial production, in Engineering of Scintillation Materials and Radiation Technologies, ed. by M. Korzhik, A. Gektin (2016), pp. 150–159Google Scholar
  34. 34.
    V. Taranyuk, A. Gektin, A. Kolesnikov, V. Shlyakhturov, Bulk halide single crystal growth by skull technique, in Proceedings of 7th International Workshop on Crystal Growth Technology, Potsdam, Germany, 2–6 July 2017Google Scholar
  35. 35.
    V.I. Aleksandrov, I.A. Gerasimova, A.V. Kolesnikov, E.E. Lomonova, V.V. Osiko, V.A. Panov, P.A. Makarov, A.V. Archakov, N.G. Gorashchenko, A.A. Mayer, Growth of sillenite (BGO) single crystals from cold container. Russ. J. Inorg. Chem. 35, 878–883 (1990)Google Scholar
  36. 36.
    T. Fukuda, V.I. Chani, Shaped Crystals Growth by Micro-Pulling-Down Technique (Springer, Berlin, 2007)CrossRefGoogle Scholar
  37. 37.
    H.E. La Belle Jr., Growth of controlled profile crystals from the melt. Part II. Edge defined, film-fed growth (EFG). Mater. Res. Bull. 6, 581–590 (1971)CrossRefGoogle Scholar
  38. 38.
    V. Kononets, Growth from melt by micro-pulling down (_-PD) and Czochralski (Cz) techniques and characterization of LGSO and garnet scintillator crystals. Theoretical and/or physical chemistry. Université Claude Bernard—Lyon I (2014)Google Scholar
  39. 39.
    S. Faraj, Growth and characterization of Ce doped LuAG single crystal fibers by the micropulling down technique. Materials. Université de Lyon (2017) (English)Google Scholar
  40. 40.
    V. Kononets et al., in Development of YAG:Ce, Mg, YAGG:Ce Scintillation Fibers Engineering of Scintillation Materials and Radiation Technologies, ed. by M. Korzhik, A. Gektin (2016), pp. 114–128Google Scholar
  41. 41.
    Y. Yokota, K. Nishimoto, S. Kurosawa et al., Crystal growth of Eu:SrI2 single crystals by micro-pulling-down method and the scintillation properties. J. Cryst. Growth 375, 49–52 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    J. Frank, D. Haven, V. Ouspenski, Advances, results and perspectives in industrial scale high temperature oxide crystal growth, in Proceedings of 7th International Workshop on Crystal Growth Technology, Potsdam, Germany, 2–6 July 2017Google Scholar
  43. 43.
    G. Calvert, C. Guguschev, A. Burger, M. Groza, J.J. Derby, R.S. Feigelson, High speed growth of SrI2 scintillator crystals by the EFG process. J. Cryst. Growth 455, 143–151 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    E. Galenin, V. Baumer, I. Gerasymov, S. Tkachenko, O. Sidletskiy, Characterization of bismuth germanate crystals grown by EFG method. Cryst. Res. Technol. 50(2), 150–154 (2015)CrossRefGoogle Scholar
  45. 45.
    K. Kamada et. al., Shaped crystal growth of novel oxide scintillators by the edge defined film fed growth method, in Proceedings of SCINT-2017, Chamonix France, 18–22 Sept 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Scintillation MaterialsNAS of UkraineKharkivUkraine

Personalised recommendations