Fast Processes in Scintillators

  • Andrei N. Vasil’evEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 227)


Development of new generation of accelerators for high energy physics with extremely high luminosity and new demands from medical imaging with PET requires fast scintillators with response of 10 ps. During last few years the physics of fast processes in scintillators attracts attention of the community. These processes include fast emission which occur in parallel with relaxation of electronic excitations (intraband luminescence, crossluminescence and other types of hot emission) and fast energy transfer to activators and new ways of fast creation of emission centers like capture of an electron by Ce4+ ions, and some other phenomena. The paper reviews the formation of scintillating signal in such systems.



This research is carried out in the frame of Crystal Clear Collaboration and is supported by a European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 644260 (INTELUM) and COST ACTION TD1401 (FAST).


  1. 1.
    P. Lecoq, M.Korzhik, A. Vasil’ev, Can transient phenomena help improving time resolution in scintillators. IEEE Trans. Nucl. Sci. 61, 229 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    S.E. Derenzo, W.W. Moses, R.H. Huesman, T.F. Budinger, Critical instrumentation issues for < 2 mm resolution, high sensitivity brain PET. Ann. Nucl. Med. 7, S3–S3 (1993)Google Scholar
  3. 3.
    P. Lecoq, Pushing the Limits in Time-of-Flight PET Imaging. IEEE Trans. Radiation Plasma Med. Sci. 1(6), 473–485 (2017)CrossRefGoogle Scholar
  4. 4.
    C. Dujardin et al., Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65(8), 1977–1997 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    R. Turtos, S. Gundacker, A. Polovitsyn, S. Christodoulou, M. Salomoni, E. Auffray, I. Moreels, P. Lecoq, J. Grim, Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11(10), P10 015 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    D.R. Schaart et al., LaBr3:Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys. Med. Biol. 55(7) (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M.V. Nemallapudi et al., Sub-100 ps coincidence time resolution for positron emission tomography with LSO: Ce codoped with Ca. Phys. Med. Biol. 60(12), 4635–4649 (2015)CrossRefGoogle Scholar
  8. 8.
    J.W. Cates, C.S. Levin, Advances in coincidence time resolution for PET. Phys. Med. Biol. 61(6), 2255–2264 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Gundacker et al., State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 11(8) (2016)ADSCrossRefGoogle Scholar
  10. 10.
    P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, C. Pedrini, Inorganic Scintillators for Detector Systems (Springer, Berlin, 2006)Google Scholar
  11. 11.
    A.N. Vasil’ev, Microtheory of scintillation in crystalline materials, in Engineering of Scintillation Materials and Radiation Technologies (2017), pp. 3–34Google Scholar
  12. 12.
    A.N. Vasil’ev, From luminescence non-linearity to scintillation nonproportionality. IEEE Trans. Nucl. Sci. 55(3), 1054–1061 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A.N. Vasil’ev, A.V. Gektin, Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 61, 235–245 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Gektin, A. Vasil’ev, Scintillation, phonon and defect channel balance; the sources for fundamental yield increase. Funct. Mater. 23(2), 183–190 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Gao, Y. Xie, S. Kerisit, L.W. Campbell, W.J. Weber, Yield, variance and spatial distribution of electron–hole pairs in CsI. NIM A 652, 564–567 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    R. Kirkin, V.V. Mikhailin, A.N. Vasil’ev, Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59(5), 2057–2064 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Wang, Y. Xie, B.D. Cannon, L.W. Campbell, F. Gao, S. Kerisit, Computer simulation of electron thermalization in CsI and CsI(Tl). J. Appl. Phys. 110, 064903 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Wang, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators. J. Appl. Phys. 112, 014906 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    D. Vaisburd, O. Koroleva, S. Kharitonova, Instantaneous spectrum of passively ionized electrons in a dielectric irradiated by a high-power electron beam. Russ. Phys. J. 39(11), 1114–1121 (1996)CrossRefGoogle Scholar
  20. 20.
    R.G. Deich, M. Karklina, L. Nagli, Intraband luminescence of CsI crystal, Solid State Commun. 71(10), 859–862 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    S.I. Omelkov, V. Nagirnyi, A.N. Vasil’ev, M. Kirm, New features of hot intraband luminescence for fast timing. J. Lumin. 176, 309–317 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105, 044507_1–044507_115 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, The role of different linear and non-linear channels of relaxation in scintillator non-proportionality. J. Lumin. 129, 1790–1793 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    X. Lu, Q. Li, G.A. Bizarri, K. Yang, M.R. Mayhugh, P.R. Menge, R.T. Williams, Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI: Tl at 295 K. Phys. Rev. B 92(11), 115207 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J.Q. Grim, Q. Li, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators. Physica Status Solidi (a) 209, (12), 2421–2426 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Q. Li, J.Q. Grim, K.B. Ucer, A. Burger, G.A. Bizarri, W.W. Moses, R.T. Williams, Host structure dependence of light yield and proportionality in scintillators in terms of hot and thermalized carrier transport. Physica Status Solidi (RRL)-Rapid Research Letters 6 (8), 346–348 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Q. Li, J.Q. Grim, R.T. Williams, G.A. Bizarri, W.W. Moses, A transport-based model of material trends in nonproportionality of scintillators. J. Appl. Phys. 109(12), 123716 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    R.T. Williams, J.Q. Grim, Q. Li, K.B. Ucer, W.W. Moses, Excitation density, diffusion-drift, and proportionality in scintillators. Physica status Solidi (b) 248(2), 426–438 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Kirm, V. Nagirnyi, E. Feldbach, M. De Grazia, B. Carre, H. Merdji, S. Guizard, G. Geoffroy, J. Gaudin, N. Fedorov, P. Martin, A. Vasil’ev, A. Belsky, Exciton-exciton interactions in CdWO4 irradiated by intense femtosecond vacuum ultraviolet pulses. Phys. Rev. B 79, 233103 (2009)Google Scholar
  30. 30.
    N. Fedorov, A. Belsky, E. Constant, D. Descamps, P. Martin, A.N. Vasil’ev, Quenching of excitonic luminescence of alkaline earth fluorides excited by VUV harmonics of femtosecond laser. J. Lumin. 129, 1813–1816 (2009)CrossRefGoogle Scholar
  31. 31.
    J.Q. Grim, K.B. Ucer, A. Burger, P. Bhattacharya, E. Tupitsyn, E. Rowe et al., Nonlinear quenching of densely excited states in wide-gap solids. Phys. Rev. B 87(12), 125117 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    S. Gridin, A. Belsky, C. Dujardin, A. Gektin, N. Shiran, A. Vasil’ev, Kinetic Model of energy relaxation in CsI: A (A = Tl and In) scintillators. J. Phys. Chem. C 119, 20578–20590 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Gridin, A.N. Vasil’ev, A. Belsky, N. Shiran, A. Gektin, Excitonic and activator recombination channels in binary halide scintillation crystals. Phys. Status Solidi B 251, 942–949 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    A.N. Vasil’ev, R.V. Kirkin, Emission spectrum of intraband luminescence for single parabolic band under excitation of wide-band-gap insulators by ionizing radiation and particles. Phys. Wave Phenom. 23, 186–191 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    V.N. Makhov, Nucl. Instr. Meth. A 308, 187 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Kayanuma, A. Kotani, J. Electron Spectrosc. Relat. Phenom. 79, 219 (1996)CrossRefGoogle Scholar
  37. 37.
    O.I. Baum, A.N. Vasil’ev, Modification of crossluminescence spectra due to localization of core hole: tight-binding approximation, in Proceedings of International Conference on Inorganic Scintillators and Their Applications (SCINT99), Moscow (2000), pp. 453–457Google Scholar
  38. 38.
    R. Novotny, in Proceedings of International Conference on Inorganic Scintillators and Their Applications (SCINT95). (Delft University Press, The Netherlands, 1996), pp. 70–73Google Scholar
  39. 39.
    R.A. Glukhov, C.Pedrini, A.N. Vasil’ev, A.M. Yakunin, Track effects in crossluminescence, in Proceedings of International Conference on Inorganic Scintillators and Their Applications (SCINT99), Moscow (2000), pp. 446–452Google Scholar
  40. 40.
    S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61, 2802–2837 (2016)CrossRefGoogle Scholar
  41. 41.
    A. Belsky, K. Ivanovskikh, A. Vasil’Ev, M.F. Joubert, C. Dujardin, Estimation of the electron thermalization length in ionic materials. J. Phys. Chem. Lett. 4(20), 3534–3538 (2013)CrossRefGoogle Scholar
  42. 42.
    E. Auffray et al., Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)Google Scholar
  43. 43.
    G. Tamulaitis, A. Vaitkeviˇcius, S. Nargelas, R. Augulis, V. Gulbinas, P. Bohacek, M. Nikl, A. Borisevich, A. Fedorov, M. Korjik, E. Auffray, Subpicosecond luminescence rise time in magnesium codoped GAGG: Ce scintillator. NIM A 870, 25–29 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    M.T. Lucchini et al., Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd3Al2Ga3O12 crystals. NIM A 816, 176–183 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    G. Tamulatis, A. Vasil’ev, M. Korzhik, A. Mazzi, A. Gola, S. Nargelas, A. Vaitkevičius, A. Fedorov, D. Kozlov, Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE TNS (in press) (2019)Google Scholar
  46. 46.
    A. Belsky, K. Lebbou, V. Kononets, O. Sidletskiy, A. Gektin, E. Auffray, D. Spassky, A.N. Vasil’ev, Decay Mechanisms in YAG-Ce,Mg Fibers Excited by γ- and X-rays. Opt. Mater. (in press) (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations