Advertisement

Free Carrier Dynamics in Scintillation Materials

  • Mikhail Korzhik
  • Gintautas Tamulaitis
  • Andrey N. Vasil’ev
Chapter
  • 24 Downloads
Part of the Particle Acceleration and Detection book series (PARTICLE)

Abstract

This chapter presents a review of the current results on the carrier dynamics in activated and self-activated scintillators, which are obtained by using time-resolved photoluminescence spectroscopy and differential optical absorption techniques with time resolution in picosecond and subpicosecond domains. The optical techniques ensuring a high time resolution are introduced. The formation of the luminescence response to a short-pulse excitation is in a special focus. The importance of carrier trapping, peculiarities of the trapping in mixed garnet- and orthosilicate-type scintillators, and the influence of codoping on excitation transfer are discussed in more detail.

References

  1. 1.
    D. Renker, E. Lorenz, Advances in solid state photon detectors. J. Instrum. 4(4), P04004–P04004 (2009)CrossRefGoogle Scholar
  2. 2.
    C. Piemonte, A. Ferri, A. Gola, T. Pro, N. Serra, A. Tarolli, N. Zorzi, Characterization of the first FBK high-density cell silicon photomultiplier technology. IEEE Trans. Electron Devices 60(8), 2567–2573 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    C. Piemonte, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, G. Zappala, N. Zorzi, Performance of NUV-HD silicon photomultiplier technology. IEEE Trans. Electron Devices 63(3), 1111–1116 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    N. D’Ascenzo, W. Brockherde, S. Dreiner, A. Schwinger, A. Schmidt, Q. Xie, Design and characterization of a silicon photomultiplier in 0.35-um CMOS. IEEE J. Electron Devices Soc. 6, 74–80 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Bornheim, M.H. Hassanshahi, M. Griffioen, J. Mao, A. Mangu, C. Peña, M. Spiropulu, S. Xie, Z. Zhang, LYSO-based precision timing detectors with SiPM readout. Nucl. Instrum. Methods Phys. Res. Sect. A 896, 75–81 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    A. Gola, C. Piemonte, A. Tarolli, Analog circuit for timing measurements with large area SiPMs coupled to LYSO crystals. IEEE Trans. Nucl. Sci. 60(2), 1296–1302 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    F. Acerbi, G. Paternoster, A. Gola, V. Regazzoni, N. Zorzi, C. Piemonte, High-density silicon photomultipliers: Performance and linearity evaluation for high efficiency and dynamic-range spplications. IEEE J. Quantum Electron. 54(2), 1–7 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Kirm, V. Babin, E. Feldbach, S. Guizard, M. De Grazia, V. Nagirnyi, A. Vasil’ev, S. Vielhauer, Behaviour of scintillators under XUV free electron laser radiation. J. Lumin. 128(5–6), 732–734 (2008)CrossRefGoogle Scholar
  9. 9.
    P.-A. Douissard, T. Martin, F. Riva, E. Mathieu, Y. Zorenko, V. Savchyn, T. Zorenko, A. Fedorov, Scintillating screens for micro-imaging based on the Ce-Tb doped LuAP single crystal films. IEEE Trans. Nucl. Sci. 61(1), 433–438 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    G. Tamulaitis, A. Vasil’ev, M. Korzhik, A. Gola, S. Nargelas, V. Vaitkevicius, A. Fedorov, D. Kozlov, Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE Trans. Nucl. Sci. 66(7), 1879–1888 (2019)ADSCrossRefGoogle Scholar
  11. 11.
    K.B. Ucer, G. Bizarri, A. Burger, A. Gektin, L. Trefilova, R.T. Williams, Electron thermalization and trapping rates in pure and doped alkali and alkaline-earth iodide crystals studied by picosecond optical absorption. Phys. Rev. B 89(16), 1–15 (2014)CrossRefGoogle Scholar
  12. 12.
    V.N. Makhov, Vacuum ultraviolet luminescence of wide band-gap solids studied using time-resolved spectroscopy with synchrotron radiation. Phys. Scr. 89(4), 044010 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A. Belsky, K. Ivanovskikh, A. Vasil’ev, M.-F. Joubert, C. Dujardin, Estimation of the electron thermalization length in ionic materials. J. Phys. Chem. Lett. 4(20), 3534–3538 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Becker et al., Time resolved luminescence spectroscopy of wide bandgap insulators. J. Electron Spectros. Relat. Phenom. 79, 99–102 (1996)CrossRefGoogle Scholar
  15. 15.
    I.A. Kamenskikh, V.V. Mikhailin, I.H. Munro, D.A. Shaw, I.N. Shpinkov, A.N. Vasil’ev, Decay of core holes in cesium chloride studied by the luminescence spectroscopy. J. Lumin. 72–74, 930–932 (1997)CrossRefGoogle Scholar
  16. 16.
    A.N. Belsky et al., Luminescence quenching as a probe for the local density of electronic excitations in insulators. J. Electron Spectrosc. Relat. Phenomena 79, 147–150 (1996)CrossRefGoogle Scholar
  17. 17.
    A.N. Belsky et al., Fast luminescence of undoped PbWO4 crystal. Chem. Phys. Lett. 243(5–6), 552–558 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    M. Itoh, M. Kamada, N. Ohno, Temperature dependence of auger-free luminescence in alkali and alkaline-earth halides. J. Phys. Soc. Jpn. 66(8), 2502–2512 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Terekhin, A.N. Vasil’ev, M. Kamada, E. Nakamura, S. Kubota, Effect of quenching processes on the decay of fast luminescence from barium fluoride excited by VUV synchrotron radiation. Phys. Rev. B 52(5), 3117–3121 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    E. Meltchakov et al., Soft X-ray excitation of luminescence in wide bandgap crystals doped with rare-earth ions. Phys. Status Solidi 4(3), 1092–1095 (2007)Google Scholar
  21. 21.
    P.-A. Douissard et al., Scintillating screens for micro-imaging based on the Ce-Tb doped LuAP single crystal films. IEEE Trans. Nucl. Sci. 61(1), 433–438 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M. Kirm et al., Behaviour of scintillators under XUV free electron laser radiation. J. Lumin. 128(5–6), 732–734 (2008)CrossRefGoogle Scholar
  23. 23.
    R.M. Turtos et al., Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11(10), P10015–P10015 (2016)CrossRefGoogle Scholar
  24. 24.
    G. Tamulaitis et al., Improvement of the time resolution of radiation detectors based on Gd3Al2Ga3O12 scintillators with SiPM readout. IEEE Trans. Nucl. Sci. 66(7), 1879–1888 (2019)ADSCrossRefGoogle Scholar
  25. 25.
    K.B. Ucer, G. Bizarri, A. Burger, A. Gektin, L. Trefilova, R.T. Williams, Electron thermalization and trapping rates in pure and doped alkali and alkaline-earth iodide crystals studied by picosecond optical absorption. Phys. Rev. B 89(16), 1–15 (2014)CrossRefGoogle Scholar
  26. 26.
    P. Li, S. Gridin, K.B. Ucer, R.T. Williams, P.R. Menge, Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce. Phys. Rev. B 97(14), 1–18 (2018)Google Scholar
  27. 27.
    G. Tamulatis et al., Improvement of response time in GAGG:Ce scintillation crystals by magnesium codoping. J. Appl. Phys. 124(21), 215907 (2018)CrossRefGoogle Scholar
  28. 28.
    G. Tamulaitis et al., Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 870, 25–29 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    M.T. Lucchini et al., Measurement of non-equilibrium carriers dynamics in Ce-doped YAG, LuAG and GAGG crystals with and without Mg-codoping. J. Lumin. 194, 1–7 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Korzhik et al., Timing properties of Ce-doped YAP and LuYAP scintillation crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 927, 169–173 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    P. Li, S. Gridin, K.B. Ucer, R.T. Williams, P.R. Menge, Picosecond absorption spectroscopy of self-trapped excitons and Ce excited states in CeBr3 and La1-xCexBr3. Phys. Rev. B 99(10), 1–9 (2019)Google Scholar
  32. 32.
    C.L. Melcher, J.S. Schweitzer, Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39(4), 502–505 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Cham, 2017)CrossRefGoogle Scholar
  34. 34.
    C.L. Melcher, Scintillation crystals for PET. J. Nucl. Med. 41, 1051–1055 (2000)Google Scholar
  35. 35.
    D.L. Bailey, D.W. Townsend, P.E. Valk, M.N. Maisey, Positron Emission Tomography (Springer, Secaucus, 2005)CrossRefGoogle Scholar
  36. 36.
    B. H. T. Chai, Method of enhancing performance of cerium doped lutetium yttrium orthosilicate crystals and crystals produced thereby. U.S. Patent 7166845 B1, 2007Google Scholar
  37. 37.
    M.A. Spurrier, P. Szupryczynski, K. Yang, A.A. Carey, C.L. Melcher, Effects of Ca2+co-doping on the scintillation properties of LSO:Ce. IEEE Trans. Nucl. Sci. 55(3), 1178–1182 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    K. Yang, C.L. Melcher, P.D. Rack, L.A. Eriksson, Effects of calcium codoping on charge traps in LSO:Ce crystals. IEEE Trans. Nucl. Sci. 56(5), 2960–2965 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    H.E. Rothfuss, C.L. Melcher, L.A. Eriksson, M.A. Spurrier Koschan, The effect of Ca2+ codoping on shallow traps in YSO:Ce scintillators. IEEE Trans. Nucl. Sci. 56(3), 958–961 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    S. Blahuta, A. Bessiere, B. Viana, P. Dorenbos, V. Ouspenski, Evidence and consequences of Ce4+ in LYSO:Ce,Ca and LYSO:Ce,Mg single crystals for medical imaging applications. IEEE Trans. Nucl. Sci. 60(4), 3134–3141 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    D. Ding, B. Liu, Y. Wu, J. Yang, G. Ren, J. Chen, Effect of yttrium on electron–phonon coupling strength of 5d state of Ce3+ ion in LYSO:Ce crystals. J. Lumin. 154, 260–266 (2014)CrossRefGoogle Scholar
  42. 42.
    E. Auffray et al., Excitation transfer engineering in Ce-doped oxide crystalline scintillators by codoping with alkali-earth ions. Phys. Status Solidi 215(7), 1700798 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    C.L. Melcher, S. Friedrich, S.P. Cramer, M.A. Spurrier, P. Szupryczynski, R. Nutt, Cerium oxidation state in LSO:Ce scintillators. IEEE Trans. Nucl. Sci. 52(5), 1809–1812 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    L. Ning et al., Electronic properties and 4f → 5d transitions in Ce-doped Lu2SiO5: A theoretical investigation. J. Mater. Chem. 22(27), 13723–13731 (2012)CrossRefGoogle Scholar
  45. 45.
    S. Blahuta et al., Defects identification and effects of annealing on Lu2(1-x)Y2xSiO5 (LYSO) single crystals for scintillation application. Materials (Basel) 4(7), 1224–1237 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    E. Auffray et al., Radiation damage of LSO crystals under γ- and 24GeV protons irradiation. Nucl. Instrum. Methods Phys. Res. Sect. A 721, 76–82 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    A.N. Belsky et al., Progress in the development of LuAlO3-based scintillators. IEEE Trans. Nucl. Sci. 48(4), 1095–1100 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    Y. Wu et al., On the role of Li + codoping in simultaneous improvement of light yield, decay time, and afterglow of Lu2SiO5:Ce3+ scintillation detectors. Phys. Status Solidi – Rapid Res. Lett. 13(2), 1800472 (2019)ADSCrossRefGoogle Scholar
  49. 49.
    K. Kamada et al., Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. Cryst. Growth Des. 11(10), 4484–4490 (2011)CrossRefGoogle Scholar
  50. 50.
    M.V. Korzhik, A general approach to increasing the radiation hardness of complex structure oxide scintillation crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 500(1–3), 116–120 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    C.D. Brandle, Czochralski growth of oxides. J. Cryst. Growth 264(4), 593–604 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    M. Moszyński, T. Ludziejewski, D. Wolski, W. Klamra, L.O. Norlin, Properties of the YAG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 345(3), 461–467 (1994)ADSCrossRefGoogle Scholar
  53. 53.
    K. Kamada et al., Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds. J. Phys. D. Appl. Phys. 44(50), 505104 (2011)CrossRefGoogle Scholar
  54. 54.
    K. Kamada et al., Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator. Opt. Mater. (Amst) 41, 63–66 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    M.T. Lucchini et al., Effect of Mg2+ ions co-doping on timing performance and radiation tolerance of cerium doped Gd3Al2Ga3O12 crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 816, 176–183 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    M.T. Lucchini et al., Timing capabilities of garnet crystals for detection of high energy charged particles. Nucl. Instrum. Methods Phys. Res. Sect. A 852, 1–9 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    V.V. Averkiev, J.A. Valbis, Luminescence Crystals and Convertors of Ionizing Radiation (Nauka, Novosibirsk, 1985)Google Scholar
  58. 58.
    M. Nikl et al., Defect engineering in Ce-doped aluminum garnet single crystal scintillators. Cryst. Growth Des. 14(9), 4827–4833 (2014)CrossRefGoogle Scholar
  59. 59.
    M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 3(4), 463–481 (2015)CrossRefGoogle Scholar
  60. 60.
    A. Nakatsuka, A. Yoshiasa, T. Yamanaka, Cation distribution and crystal chemistry of Y3Al5−xGaxO12 (0≤x≤5) garnet solid solutions. Acta Crystallogr. Sect. B 55(3), 266–272 (1999)CrossRefGoogle Scholar
  61. 61.
    E. Auffray et al., Free carrier absorption in self-activated PbWO4 and Ce-doped Y3(Al0.25Ga0.75)3O12 and Gd3Al2Ga3O12 garnet scintillators. Opt. Mater. (Amst) 58, 461–465 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    P. Dorenbos, A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds. ECS J. Solid State Sci. Technol. 2(2), R3001–R3011 (2013)CrossRefGoogle Scholar
  63. 63.
    H. Suzuki, T.A. Tombrello, C.L. Melcher, C.A. Peterson, J.S. Schweitzer, The role of gadolinium in the scintillation processes of cerium-doped gadolinium oxyorthosilicate. Nucl. Instrum. Methods Phys. Res. Sect. A 346(3), 510–521 (1994)ADSCrossRefGoogle Scholar
  64. 64.
    H. Suzuki, T.A. Tombrello, C.L. Melcher, J.S. Schweitzer, Energy transfer from Gd to Ce in Gd2(SiO4)O:Ce. J. Lumin. 60–61, 963–966 (1994)CrossRefGoogle Scholar
  65. 65.
    F. Meng, M. Koschan, Y. Wu, C.L. Melcher, Relationship between Ca2+ concentration and the properties of codoped Gd3Ga3Al2O12:Ce scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A 797, 138–143 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    J.M. Ogieglo, Luminescence and Energy Transfer in Garnet Scintillators (Utrecht University, Utrecht, 2012)Google Scholar
  67. 67.
    M. Kavatsyuk et al., Performance of the prototype of the electromagnetic calorimeter for PANDA. Nucl. Instrum. Methods Phys. Res. Sect. A 648(1), 77–91 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    D. del Re, Timing performance of the CMS ECAL and prospects for the future. J. Phys. Conf. Ser. 587, 012003 (2015)CrossRefGoogle Scholar
  69. 69.
    A.N. Vasil, ev, microtheory of scintillation in crystalline materials, in Engineering of Scintillation Materials and Radiation Technologies, (Belarus CNUM, Minsk, 2017), pp. 3–34CrossRefGoogle Scholar
  70. 70.
    S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Phys. Med. Biol. 61(7), 2802–2837 (2016)CrossRefGoogle Scholar
  71. 71.
    M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, Y. Zorenko, K. Nejezchleb, The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Phys. Status Solidi 242(14), R119–R121 (2005)ADSCrossRefGoogle Scholar
  72. 72.
    V.G. Baryshevsky et al., YAlO3:Ce-fast-acting scintillators for detection of ionizing radiation. Nucl. Instrum. Methods Phys. Res. Sect. A 58(2), 291–293 (1991)CrossRefGoogle Scholar
  73. 73.
    M.V. Korzhik, O.V. Misevich, A.A. Fyodorov, YAlO3:Ce scintillators: Application for X- and soft γ-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. B 72(3–4), 499–501 (1992)ADSCrossRefGoogle Scholar
  74. 74.
    M. Kobayashi et al., YAlO3:Ce-Am light pulsers as a gain monitor for undoped CsI detectors in a magnetic field. Nucl. Instrum. Methods Phys. Res. Sect. A 337(2–3), 355–361 (1994)ADSCrossRefGoogle Scholar
  75. 75.
    M. Zhuravleva et al., Crystal growth and scintillating properties of Zr/Si-codoped YAlO3:Pr3+. IEEE Trans. Nucl. Sci. 55(3), 1476–1479 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    J.A. Mareš, M. Nikl, C. Pédrini, B. Moine, K. Blažek, A study of fluorescence emission of Ce3+ ions in YAlO3 crystals by the influence of doping concentration and codoping with Nd3+ and Cr3+. Mater. Chem. Phys. 32(4), 342–348 (1992)CrossRefGoogle Scholar
  77. 77.
    S. Petrovic, A. Kepic, M. Carson, Scintillators for PGNAA in mineral exploration. ASEG Ext. Abstr. 1, 1–6 (2018)Google Scholar
  78. 78.
    M. Moszyński, Inorganic scintillation detectors in γ-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A 505(1–2), 101–110 (2003)ADSCrossRefGoogle Scholar
  79. 79.
    V.A. Kachanov et al., Light source for energy stabilization of calorimetric detectors based on photodetectors. Nucl. Instrum. Methods Phys. Res. Sect. A 314(1), 215–218 (1992)ADSMathSciNetCrossRefGoogle Scholar
  80. 80.
    S. Pesente et al., Detection of hidden explosives by using tagged neutron beams with sub-nanosecond time resolution. Nucl. Instrum. Methods Phys. Res. Sect. A 531(3), 657–667 (2004)ADSCrossRefGoogle Scholar
  81. 81.
    A. Annenkov et al., Industrial growth of LuYAP scintillation crystals. Nucl. Instrum. Methods Phys. Res. Sect. A 537(1–2), 182–184 (2005)ADSCrossRefGoogle Scholar
  82. 82.
    M. Korzhik, Physics of scintillation in oxide crystals (Belarussian State University, Minsk, 2003)Google Scholar
  83. 83.
    M. Nikl et al., Shallow traps and radiative recombination processes in Lu3Al5O12:Ce single crystal scintillator. Phys. Rev. B 76(19), 195121 (2007)ADSCrossRefGoogle Scholar
  84. 84.
    C.R. Stanek, K.J. McClellan, M.R. Levy, R.W. Grimes, Defect behavior in rare earth REAlO3 scintillators. J. Appl. Phys. 99(11), 113518 (2006)ADSCrossRefGoogle Scholar
  85. 85.
    S. Gundacker et al., State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. J. Instrum. 11(8), P08008–P08008 (2016)CrossRefGoogle Scholar
  86. 86.
    H. Nishimura, M. Sakata, T. Tsujimoto, M. Nakayama, Origin of the 4.1-eV luminescence in pure CsI scintillator. Phys. Rev. B 51(4), 2167–2172 (1995)ADSCrossRefGoogle Scholar
  87. 87.
    A.N. Belsky et al., Experimental study of the excitation threshold of fast intrinsic luminescence of CsI. Phys. Rev. B 49(18), 13197–13200 (1994)ADSCrossRefGoogle Scholar
  88. 88.
    G. Bizarri, P. Dorenbos, Charge carrier and exciton dynamics in LaBr3:Ce3+ scintillators: Experiment and model. Phys. Rev. B 75(18), 184302 (2007)ADSCrossRefGoogle Scholar
  89. 89.
    U. Rogulis et al., Magnetic resonance investigations of LaCl3:Ce3+ scintillators. Radiat. Eff. Defects Solids 157(6–12), 951–955 (2002)ADSCrossRefGoogle Scholar
  90. 90.
    D.N. ter Weele, D.R. Schaart, P. Dorenbos, Intrinsic scintillation pulse shape measurements by means of picosecond x-ray excitation for fast timing applications. Nucl. Instrum. Methods Phys. Res. Sect. A 767, 206–211 (2014)ADSCrossRefGoogle Scholar
  91. 91.
    J. Glodo et al., Effects of Ce concentration on scintillation properties of LaBr3:Ce. IEEE Trans. Nucl. Sci. 52(5), 1805–1808 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    S. Seifert, J.H.L. Steenbergen, H.T. van Dam, D.R. Schaart, Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters. J. Instrum. 7(9), P09004–P09004 (2012)CrossRefGoogle Scholar
  93. 93.
    R.W. Novotny et al., Radiation hardness and recovery processes of PWO crystals at -25degC. IEEE Trans. Nucl. Sci. 55(3), 1283–1288 (2008)ADSCrossRefGoogle Scholar
  94. 94.
    S. Burachas et al., Lead tungstate crystals for the ALICE/CERN experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 486(1–2), 83–88 (2002)ADSCrossRefGoogle Scholar
  95. 95.
    A. Breskin, The CERN Large Hadron Collider: Accelerator and Experiments (CERN, Geneva, 2009)Google Scholar
  96. 96.
    R.W. Novotny, Fast and compact lead tungstate-based electromagnetic calorimeter for the PANDA detector at GSI. IEEE Trans. Nucl. Sci. 51(6), 3076–3080 (2004)ADSCrossRefGoogle Scholar
  97. 97.
    M. Nikl, Wide band gap scintillation materials: Progress in the technology and material understanding. Phys. Status Solidi 178(2), 595–620 (2000)ADSCrossRefGoogle Scholar
  98. 98.
    A. Annenkov, M. Korzhik, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Methods Phys. Res. Sect. A 490(1–2), 30–50 (2002)ADSCrossRefGoogle Scholar
  99. 99.
    W. van Loo, Phys. Stat. Sol. (a) 27, 565 (1979); 28, 227 (1979)Google Scholar
  100. 100.
    J.A. Groenink, G. Blasse, Some new observations on the luminescence of PbMoO4 and PbWO4. J. Solid State Chem. 32(1), 9–20 (1980)ADSCrossRefGoogle Scholar
  101. 101.
    E. Auffray et al., Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 178, 54–60 (2016)CrossRefGoogle Scholar
  102. 102.
    M. Nikl et al., Excitonic emission of scheelite tungstates AWO4 (A=Pb, Ca, Ba, Sr). J. Lumin. 87–89, 1136–1139 (2000)CrossRefGoogle Scholar
  103. 103.
    M. Itoh, T. Katagiri, Intrinsic luminescence from self-trapped excitons in Bi4Ge3O12 and Bi12GeO20: Decay kinetics and multiplication of electronic excitations. J. Phys. Soc. Jpn. 79(7), 074717 (2010)ADSCrossRefGoogle Scholar
  104. 104.
    M.J. Weber, R.R. Monchamp, Luminescence of Bi4Ge3O12 : Spectral and decay properties. J. Appl. Phys. 44(12), 5495–5499 (1973)ADSCrossRefGoogle Scholar
  105. 105.
    R. Moncorge, B. Jacquier, G. Boulon, F. Gaume-Mahn, J. Janin, Electronic structure and photoluminescence processes in Bi4Ge3O12 single crystal. J. Lumin. 12–13, 467–472 (1976)CrossRefGoogle Scholar
  106. 106.
    W.W. Moses, Time of flight in pet revisited. IEEE Trans. Nucl. Sci. 50(5), 1325–1330 (2003)ADSCrossRefGoogle Scholar
  107. 107.
    S. Vandenberghe, E. Mikhaylova, E. D’Hoe, P. Mollet, J.S. Karp, Recent developments in time-of-flight PET. EJNMMI Phys. 3(1), 3 (2016)CrossRefGoogle Scholar
  108. 108.
    C. Dujardin et al., Spectroscopic properties of CeF3 and LuF3:Ce3+ thin films grown by molecular beam epitaxy. Opt. Mater. (Amst) 16(1–2), 69–76 (2001)ADSCrossRefGoogle Scholar
  109. 109.
    C. Pedrini, B. Moine, J.C. Gacon, B. Jacquier, One- and two-photon spectroscopy of Ce3+ ions in LaF3-CeF3 mixed crystals. J. Phys. Condens. Matter 4(24), 5461–5470 (1992)ADSCrossRefGoogle Scholar
  110. 110.
    E. Auffray et al., Picosecond transient absorption rise time for ultrafast tagging of the interaction of ionizing radiation with scintillating crystals in high energy physics experiments. J. Instrum. 9(7), P07017–P07017 (2014)CrossRefGoogle Scholar
  111. 111.
    C. Pedrini, C. Dujardin, J.C. Gâcon, A.N. Belsky, A.N. Vasil’ev, A.G. Petrosyan, Cerium-doped fluorescent and scintillating ionic crystals. Radiat. Eff. Defects Solids 154(3–4), 277–286 (2001)ADSCrossRefGoogle Scholar
  112. 112.
    I.A. Kamenskikh et al., LSO-Ce fluorescence spectra and kinetics for UV, VUV and X-ray excitation. Radiat. Eff. Defects Solids 135(1–4), 391–396 (1995)CrossRefGoogle Scholar
  113. 113.
    R. Kirkin, V.V. Mikhailin, A.N. Vasil’ev, Recombination of correlated electron–hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci. 59(5), 2057–2064 (2012)ADSCrossRefGoogle Scholar
  114. 114.
    S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, The high-throughput highway to computational materials design. Nat. Mater. 12(3), 191–201 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    S. Curtarolo et al., AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012)CrossRefGoogle Scholar
  116. 116.
    N.C. Carvalho, J.-M. Le Floch, J. Krupka, M.E. Tobar, Multi-mode technique for the determination of the biaxial Y2SiO5 permittivity tensor from 300 to 6K. Appl. Phys. Lett. 106(19), 192904 (2015)ADSCrossRefGoogle Scholar
  117. 117.
    H. Huang, Q. Li, X. Lu, Y. Qian, Y. Wu, R.T. Williams, Role of hot electron transport in scintillators: A theoretical study. Phys. Status Solidi – Rapid Res. Lett. 10(10), 762–768 (2016)ADSCrossRefGoogle Scholar
  118. 118.
    M.P. Prange, Y. Xie, L.W. Campbell, F. Gao, S. Kerisit, Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality. J. Appl. Phys. 122(23), 234504 (2017)ADSCrossRefGoogle Scholar
  119. 119.
    A.N. Vasil’ev, A.V. Gektin, Multiscale approach to estimation of scintillation characteristics. IEEE Trans. Nucl. Sci. 61(1), 235–245 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mikhail Korzhik
    • 1
  • Gintautas Tamulaitis
    • 2
  • Andrey N. Vasil’ev
    • 3
  1. 1.Research Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus
  2. 2.Semiconductor Physics DepartmentVilnius UniversityVilniusLithuania
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations