Advertisement

Mechanistic Models with Spatial Structures and Reactive Behavior Change

  • Ping Yan
  • Gerardo Chowell
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 70)

Abstract

As we have emphasized in Chaps. 4 and 5, simple homogeneous models of transmission or growth dynamics often yield an early exponential epidemic growth phase even when the population is stratified into different groups (e.g., age, gender, regions). However, recent work has highlighted the presence of early sub-exponential growth patterns in case incidence from empirical outbreak data. This suggests that integrating detailed and often unobserved heterogeneity into simple mechanistic models could open the door to a new and exciting research area to better understand the role of heterogeneity on key transmission parameters, epidemic size, stochastic extinction, the effects of interventions, and disease forecasts.

References

  1. Abdoulaye, B., Moussa, S., Daye, K., Boubakar, B. S., Cor, S. S., Idrissa, T., et al. (2014). Experience on the management of the first imported Ebola virus disease case in Senegal. The Pan African Medical Journal, 22(Suppl. 1), 6.Google Scholar
  2. Albert, R., & Barabasi, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.MathSciNetCrossRefGoogle Scholar
  3. Althaus, C. L. (2014). Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in West Africa. arXiv preprint. arXiv:1408.3505.Google Scholar
  4. Anderson, R. M., & May, R. M. (1991) Infectious diseases of humans, dynamics and control. Oxford: Oxford University Press.Google Scholar
  5. Apolloni, A., Poletto, C., Ramasco, J. J., Jensen P., & Colizza, V. (2014). Metapopulation epidemic models with heterogeneous mixing and travel behaviour. Theoretical Biology and Medical Modelling, 11, 3.CrossRefGoogle Scholar
  6. Appoloni, A., Poletto, C., & Colizza, V. (2013). Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic. BMC Infectious Diseases, 13, 176.CrossRefGoogle Scholar
  7. Arino, J., Davis, J. R., Hartley, D., Jordan, R., Miller, J. M., & van den Driessche, P. (2005). A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology, 22(2), 129–142.CrossRefGoogle Scholar
  8. Arino, J., Jordan, R., & van den Driessche, P. (2007). Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical Biosciences, 206(1), 46–60.MathSciNetCrossRefGoogle Scholar
  9. Bacaër, N., & Ait Dads el, H. (2011). Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. Journal of Mathematical Biology, 62(5), 741–762.Google Scholar
  10. Ball, F. G., Britton, T., House, T., Isham, V., Mollison, D., Pellis, L., et al. (2015). Seven challenges for metapopulation models of epidemics, including households models. Epidemics, 10, 63–67.CrossRefGoogle Scholar
  11. Ball, F. G., Sirl, D., & Trapman, P. (2009). Threshold behaviour and final outcome of an epidemic on a random network with household structure. Advances in Applied Probability, 41, 765–796.MathSciNetCrossRefGoogle Scholar
  12. Bansal, S., Grenfell, B. T., & Meyers, L. A. (2007). When individual behaviour matters: Homogeneous and network models in epidemiology. Journal of the Royal Society Interface, 4(16), 879–891.CrossRefGoogle Scholar
  13. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random network. Science, 286, 509–512.MathSciNetCrossRefGoogle Scholar
  14. Belik, V., Geisel, T., & Brockmann, D. (2011). Natural human mobility patterns and spatial spread of infectious diseases. Physical Review X, 1, 011001.CrossRefGoogle Scholar
  15. Blythe, S. P., & Castillo-Chavez, C. (1989). Like-with-like preference and sexual mixing models. Mathematical Biosciences, 96, 221–238.CrossRefGoogle Scholar
  16. Breakwell, L., Gerber, A. R., Greiner, A. L., Hastings, D. L., Mirkovic, K., Paczkowski, M. M., et al. (2016). Early identification and prevention of the spread of Ebola in high-risk African countries. MMWR Supplements, 65(3), 21–27.CrossRefGoogle Scholar
  17. Capaldi, A., Behrend, S., Berman, B., Smith, J., Wright, J., & Lloyd, A. L. (2012). Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 9, 553–576.MathSciNetCrossRefGoogle Scholar
  18. Chowell, G., Hengartner, N. W., Castillo-Chavez, C., Fenimore, P. W., & Hyman, J. M. (2004). The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda. Journal of Theoretical Biology, 229(1), 119–126.MathSciNetCrossRefGoogle Scholar
  19. Chowell, G., Hincapie-Palacio, D., Ospina, J., Pell, B., Tariq, A., Dahal, S., et al. (2016). Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics. PLOS Currents Outbreaks, 8.  https://doi.org/10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583
  20. Chowell, G., Rivas, A. L., Hengartner, N. W., Hyman, J. M., & Castillo-Chavez, C. (2006). The role of spatial mixing in the spread of foot-and-mouth disease. Preventive Veterinary Medicine, 73(4), 297–314.CrossRefGoogle Scholar
  21. Chowell, G., & Rothenberg, R. (2018). Spatial infectious disease epidemiology: On the cusp. BMC Medicine, 16(1), 192.CrossRefGoogle Scholar
  22. Chowell, G., Sattenspiel, L., Bansal, S., & Viboud, C. (2016). Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 18, 66–97.CrossRefGoogle Scholar
  23. Chowell, G., Viboud, C., Hyman, J. M., & Simonsen, L. (2015). The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Currents, 7.  https://doi.org/10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
  24. Chowell, G., Viboud, C., Simonsen, L., Merler, S., & Vespignani, A. (2017). Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: Lessons and the way forward. BMC Medicine, 15, 42.CrossRefGoogle Scholar
  25. Chowell, G., Viboud, C., Simonsen, L., & Moghadas, S. (2016). Characterizing the reproduction number of epidemics with early sub-exponential growth dynamics. Journal of the Royal Society Interface, 13(123).  https://doi.org/10.1098/rsif.2016.0659 CrossRefGoogle Scholar
  26. Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., et al. (2011). Networks and the epidemiology of infectious disease. Interdisciplinary Perspectives on Infectious Diseases, 2011, 284909.CrossRefGoogle Scholar
  27. Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Mathematical and computational biology (Vol. 5). Chichester: Wiley.zbMATHGoogle Scholar
  28. Eames, K. T., & Keeling, M. J. (2003). Contact tracing and disease control. Proceedings of the Royal Society of London B: Biological Sciences, 270(1533), 2565–2571.CrossRefGoogle Scholar
  29. Eichner, M., Dowell, S. F., & Firese, N. (2011). Incubation period of ebola hemorrhagic virus subtype zaire. Osong Public Health and Research Perspectives, 2(1), 3–7.CrossRefGoogle Scholar
  30. Fasina, F., Shittu, A., Lazarus, D., Tomori, O., Simonsen, L., Viboud, C., et al. (2014). Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014. Eurosurveillance, 19(40), 20920.Google Scholar
  31. Fenichel, E. P., Castillo-Chavez, C., Ceddia, M. G., Chowell, G., Parra, P. A. G., Hickling, G. J., et al. (2011). Adaptive human behavior in epidemiological models. Proceedings of the National Academy of Sciences, 108(15), 6306–6311.CrossRefGoogle Scholar
  32. Fraser, C. (2007). Estimating individual and household reproduction numbers in an emerging epidemic. PLoS One, 2(8), e758.CrossRefGoogle Scholar
  33. Goldstein, E., Paur, K., Fraser, C., Kenah, E., Wallinga, J., & Lipsitch, M. (2009). Reproductive numbers, epidemic spread and control in a community of households. Mathematical Biosciences, 221, 11–25.MathSciNetCrossRefGoogle Scholar
  34. Hadeler, K. P., & Castillo-Chavez, C. (1995). A core group model for disease transmission. Mathematical Biosciences, 128, 41–55.CrossRefGoogle Scholar
  35. Halloran, M. E., Longini, I. M., Nizam, A., & Yang, Y. (2002). Containing bioterrorist smallpox. Science, 298(5597), 1428–1432.CrossRefGoogle Scholar
  36. Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653.MathSciNetCrossRefGoogle Scholar
  37. Jacquez, J. A. (1996). Compartmental analysis in biology and medicine. Dexter, MI: Michigan Thompson-Shore Inc.zbMATHGoogle Scholar
  38. Keeling, M. J., & Eames, K. T. (2005). Networks and epidemic models. Journal of the Royal Society Interface, 2(4), 295–307.CrossRefGoogle Scholar
  39. Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  40. Kenah, E., Chao, D. L., Matrajt, L., Halloran, M. E., & Longini, I. M. Jr. (2011). The global transmission and control of influenza. PLoS One, 6(5), e19515.CrossRefGoogle Scholar
  41. Kiskowski, M. (2014). Three-scale network model for the early growth dynamics of 2014 West Africa Ebola epidemic. PLOS Currents Outbreaks.  https://doi.org/10.1371/currents.outbreaks.b4690859d91684da963dc40e00f3da81
  42. Kiskowski, M., & Chowell, G. (2015). Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control. Virulence, 7(2), 63–73.Google Scholar
  43. Longini, I. M. Jr., & Koopman, J. S. (1982). Household and community transmission parameters from final distributions of infections in households. Biometrics, 38, 115–126.CrossRefGoogle Scholar
  44. Longini, I. M., Jr., Halloran, M. E., Nizam, A., Yang, Y., Xu, S., Burke, D. S., Cummings, D. A., & Epstein, J. M. (2007). Containing a large bioterrorist smallpox attack: A computer simulation approach. International Journal of Infectious Diseases, 11(2), 98–108.CrossRefGoogle Scholar
  45. Marguta, R., & Parisi, A. (2015). Impact of human mobility on the periodicities and mechanisms underlying measles dynamics. Journal of the Royal Society Interface, 12(104), 20141317.CrossRefGoogle Scholar
  46. Martín, A. C., Derrough, T., Honomou, P., Kolie, N., Diallo, B., Konê, M., et al. (2016). Social and cultural factors behind community resistance during an Ebola outbreak in a village of the Guinean Forest region, February 2015: A field experience. International Health, 8, 227–229.CrossRefGoogle Scholar
  47. Merler, S., Ajelli, M., Fumanelli, L., Gomes, M. F., Piontti, A. P., Rossi, L., et al. (2015). Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis. The Lancet Infectious Diseases, 15(2), 204–211.CrossRefGoogle Scholar
  48. Murray, G. D., & Cliff, A. D. (1977). A stochastic model for measles epidemics in a multi-region setting. Transactions of the Institute of British Geographers, 2, 158–174.CrossRefGoogle Scholar
  49. Nishiura, H., & Chowell, G. (2014). Feedback from modelling to surveillance of Ebola virus disease. Eurosurveillance, 19(37), pii=20908.Google Scholar
  50. Olu, O. O., Lamunu, M., Nanyunja, M., Dafae, F., Samba, T., Sempiira, N., et al. (2016). Contact tracing during an outbreak of Ebola virus disease in the western area districts of Sierra Leone: Lessons for future Ebola outbreak response. Frontiers in Public Health, 4, 130.Google Scholar
  51. Pandey, A., Atkins, K. E., Medlock, J., Wenzel, N., Townsend, J. P., Childs, J. E., et al. (2014). Strategies for containing Ebola in West Africa. Science, 346(6212), 991–995.CrossRefGoogle Scholar
  52. Pellis, L., Ball, F., Bansal, S., Eames, K., House, T., Isham, V., et al. (2015). Eight challenges for network epidemic models. Epidemics, 10, 58–62.CrossRefGoogle Scholar
  53. Pellis, L., Ball, F., & Trapman, P. (2012). Reproduction numbers for epidemic models with households and other social structures. I. Definition and calculation of R0. Mathematical Biosciences, 235, 85–97.MathSciNetCrossRefGoogle Scholar
  54. Pellis, L., Ferguson, N. M., & Fraser, C. (2009). Threshold parameters for a model of epidemic spread among households and workplaces. Journal of the Royal Society Interface, 6, 979–987.CrossRefGoogle Scholar
  55. Riley, S. (2007). Large-scale spatial-transmission models of infectious disease. Science, 316(5829), 1298–1301.CrossRefGoogle Scholar
  56. Rushton, S. P., & Mautner, A. (1955). The deterministic model of a simple epidemic for more than one community. Biometrika, 42, 126–132.MathSciNetCrossRefGoogle Scholar
  57. Sattenspiel, L. (2009). The geographic spread of infectious diseases: Models and applications. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  58. Sattenspiel, L., & Dietz, K. (1995). A structured epidemic model incorporating geographic mobility among regions. Mathematical Biosciences, 128(1–2), 71–91.CrossRefGoogle Scholar
  59. Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2014). Utility of contact tracing in reducing the magnitude of Ebola disease. Germs, 4(4), 97.CrossRefGoogle Scholar
  60. Simini, P., González, M. C., Maritan, A., & Barabási, A. L. (2012). A universal model for mobility and migration patterns. Nature, 484, 96–100.CrossRefGoogle Scholar
  61. Szendroi, B., & Csányi, G. (2004). Polynomial epidemics and clustering in contact networks. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(Suppl. 5), S364–S366.Google Scholar
  62. The World Health Organization. (2014). WHO declares end of Ebola outbreak in Nigeria. World Health Organization Media Statement. Retrieved October 20.Google Scholar
  63. The World Health Organization Emergency Response Team. (2014). Ebola virus disease in West Africa - The first 9 months of the epidemic and forward projections. New England Journal of Medicine, 371(16), 1481–1495.CrossRefGoogle Scholar
  64. Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J. J., Balcan, D., Goncalves, B., et al. (2012). Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm. BMC Medicine, 10, 165.CrossRefGoogle Scholar
  65. Viboud, C., Bjornstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A., & Grenfell, B. T. (2006). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science, 312(5772), 447–451.CrossRefGoogle Scholar
  66. Viboud, C., Simonsen, L., Chowell, G. (2016). A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15, 27–37.CrossRefGoogle Scholar
  67. Vincenot, C. E., & Moriya, K. (2011). Impact of the topology of metapopulations on the resurgence of epidemics rendered by a new multiscale hybrid modeling approach. Ecological Informatics, 6, 177–186.CrossRefGoogle Scholar
  68. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440.CrossRefGoogle Scholar
  69. Weinberger, D. M., Krause, T. G., Molbak, K., Cliff, A., Briem, H., Viboud, C., et al. (2012). Influenza epidemics in Iceland over 9 decades: Changes in timing and synchrony with the United States and Europe. American Journal of Epidemiology, 176(7), 649–655.CrossRefGoogle Scholar
  70. Wilson, E. B., & Worcester, J. (1945). The spread of an epidemic. Proceedings of the National Academy of Sciences of the United States of America, 31, 327–333.Google Scholar
  71. Xia, Y. C., Bjørnstad, O. N., & Grenfell, B. T. (2004). Measles metapopulation dynamics: A gravity model for epidemiological coupling and dynamics. The American Naturalist, 164, 267–281.CrossRefGoogle Scholar
  72. Xiao, Y., Zhou, Y., & Tang, S. (2011). Modelling disease spread in dispersal networks at two levels. Mathematical Medicine and Biology: A Journal of the IMA, 28, 227–244.MathSciNetCrossRefGoogle Scholar
  73. Yan, P. (2018). A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity. Mathematical Biosciences & Engineering, 15(1), 275–298.MathSciNetCrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Ping Yan
    • 1
    • 2
  • Gerardo Chowell
    • 3
  1. 1.Infectious Diseases Prevention and Control BranchPublic Health Agency of CanadaOttawaCanada
  2. 2.Department of Statistics and Actuarial Science, Faculty of MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations