Characterizing Outbreak Trajectories and the Effective Reproduction Number

  • Ping Yan
  • Gerardo Chowell
Part of the Texts in Applied Mathematics book series (TAM, volume 70)


Emerging and re-emerging infectious diseases pose major challenges to public health worldwide. Fortunately mathematical and statistical inference and simulation approaches are part of the toolkit for guiding prevention and response plans. As the recent 2013–2016 Ebola epidemic exemplified, an unfolding infectious disease outbreak often forces public health officials to put in place control policies in the context of limited data about the outbreak and in a changing environment where multiple factors positively or negatively impact local disease transmission. Hence, the development of public health policies could benefit from mathematically rigorous and computationally efficient approaches that comprehensively assimilate data and model uncertainty in real time in order to (1) estimate transmission rates, (2) assess the impact of control interventions (vaccination campaigns, behavior changes), (3) test hypotheses relating to transmission mechanisms, (4) evaluate how behavior changes affect transmission dynamics, (5) optimize the impact of control strategies, and (6) generate forecasts to guide interventions in the short and long terms.


  1. Anderson, R. M., & May, R. M. (1982). Directly transmitted infectious diseases: Control by vaccination. Science, 215, 1053–1060.MathSciNetCrossRefGoogle Scholar
  2. Anderson, R. M., & May, R. M. (1991) Infectious diseases of humans, dynamics and control. Oxford: Oxford University Press.Google Scholar
  3. Arriola, L., & Hyman, J. M. (2009). Sensitivity analysis for uncertainty quantification in mathematical models. In G. Chowell, J. M. Hyman, L. M. Bettencourt, & C. Castillo-Chavez (Eds.), Mathematical and statistical estimation approaches in epidemiology. Dordrecht: Springer.zbMATHGoogle Scholar
  4. Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications (2nd ed.). London: The Griffin & Company Ltd.zbMATHGoogle Scholar
  5. Banks, H. T., Davidian, M., Samuels, J. R., & Sutton, K. L. (2009). An inverse problem statistical methodology summary. In G. Chowell, J. M. Hyman, L. M. Bettencourt, & C. Castillo-Chavez (Eds.), Mathematical and statistical estimation approaches in epidemiology. Dordrecht: Springer.Google Scholar
  6. Banks, H. T., Hu, S., & Thompson, W. C. (2014). Modeling and inverse problems in the presence of uncertainty. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  7. Banks, R. B. (1994). Growth and diffusion phenomena: Mathematical frameworks and applications. Berlin: Springer.CrossRefGoogle Scholar
  8. Brauer, F. (2006). Some simple epidemic models. Mathematical Biosciences and Engineering, 3, 1–15.MathSciNetCrossRefGoogle Scholar
  9. Brookmeyer, R., & Gail, M. H. (1994). AIDS epidemiology: A quantitative approach. New York, NY: Oxford University Press.Google Scholar
  10. Causton, D. R., & Venus, J. C. (1981). The biometry of plant growth. London: Edward Arnold.Google Scholar
  11. Chowell, G. (2017). Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2, 379–398.CrossRefGoogle Scholar
  12. Chowell, G., Hincapie-Palacio, D., Ospina, J., Pell, B., Tariq, A., Dahal, S., et al. (2016). Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics. PLOS Currents Outbreaks, 8.
  13. Chowell, G., Nishiura, H., & Bettencourt, L. M. (2007). Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. Journal of the Royal Society Interface, 4(12), 155–166.CrossRefGoogle Scholar
  14. Chowell, G., Sattenspiel, L., Bansal, S., & Viboud, C. (2016). Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 18, 66–97.CrossRefGoogle Scholar
  15. Chowell, G., & Viboud, C. (2016). Is it growing exponentially fast? – Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics. Infectious Disease Modelling, 1, 71–78.CrossRefGoogle Scholar
  16. Chowell, G., Viboud, C., Simonsen, L., Merler, S., & Vespignani, A. (2017). Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: Lessons and the way forward. BMC Medicine, 15, 42.CrossRefGoogle Scholar
  17. Chowell, G., Viboud, C., Simonsen, L., & Moghadas, S. (2016). Characterizing the reproduction number of epidemics with early sub-exponential growth dynamics. Journal of the Royal Society Interface, 13(123). CrossRefGoogle Scholar
  18. Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Mathematical and computational biology (Vol. 5). Chichester: Wiley.zbMATHGoogle Scholar
  19. Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7, 873–885.CrossRefGoogle Scholar
  20. Dinh, L., Chowell, G., Mizumoto, K., & Nishiura, H. (2016). Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016. Theoretical Biology and Medical Modelling, 13, 20.CrossRefGoogle Scholar
  21. Faria, N. R., da Silva Azevedo, R. D. S., Kraemer, M. U., Souza, R., Cunha, M. S., Hill, S. C., Thézé, J., Bonsall, M. B., Bowden, T. A., Rissanen, I., & Rocco, I. M. (2016). Zika virus in the Americas: Early epidemiological and genetic findings. Science, 352(6283), 345–349.CrossRefGoogle Scholar
  22. Fauci, A. S., & Morens, D. M. (2016). Zika virus in the Americas–Yet another arbovirus threat. New England Journal of Medicine, 374, 601–604.CrossRefGoogle Scholar
  23. Focks, D. A., Daniels, E., Haile, D. G., & Keesling, J. E. (1995). A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. The American Journal of Tropical Medicine and Hygiene, 53(5), 489–506.CrossRefGoogle Scholar
  24. Fraser, C. (2007). Estimating individual and household reproduction numbers in an emerging epidemic. PLoS One, 2(8), e758.CrossRefGoogle Scholar
  25. Gao, D., Lou, Y., He, D., Porco, T. C., Kuang, Y., Chowell, G., et al. (2016). Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis. Scientific Reports, 6, 28070.CrossRefGoogle Scholar
  26. Hsieh, Y. H., & Cheng, Y. S. (2006). Real-time forecast of multiphase outbreak. Emerging Infectious Diseases, 12, 122–127.CrossRefGoogle Scholar
  27. Huber, J. H., Childs, M. L., Caldwell, J. M. & Mordecai, E. A. (2018). Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Neglected Tropical Diseases, 12, e0006451. CrossRefGoogle Scholar
  28. Lee, J., Chowell, G., & Jung, E. (2016). A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events. Journal of Theoretical Biology, 408, 118–126.CrossRefGoogle Scholar
  29. Ma, J., Dushoff, J., Bolker, B. M., & Earn, D. J. (2014). Estimating initial epidemic growth rates. Bulletin of Mathematical Biology, 76, 245–260.MathSciNetCrossRefGoogle Scholar
  30. Nishiura, H., & Chowell, G. (2009). The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In G. Chowell, J. M. Hyman, L. M. A. Bettencourt, & C. Castillo-Chavez (Eds.), Mathematical and statistical estimation approaches in epidemiology. Dordrecht: Springer.zbMATHGoogle Scholar
  31. Pearl, R. (1925). The biology of population growth. New York, NY: Knopf.Google Scholar
  32. Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America, 6, 275–288.Google Scholar
  33. Pell, B., Kuang, Y. Viboud, C., & Chowell, G. (2018a). Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 22, 62–70.CrossRefGoogle Scholar
  34. Richards, F. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–301.CrossRefGoogle Scholar
  35. Ross, R. (1911). The prevention of malaria. London: John Murray.Google Scholar
  36. Schanzer, D. L., Langley, J. M., Dummer, T., Viboud, C., & Tam, T. W. (2010). A composite epidemic curve for seasonal influenza in Canada with an international comparison. Influenza and Other Respiratory Viruses, 4(5), 295–306.CrossRefGoogle Scholar
  37. Shanafelt, D. W., Jones, G., Lima, M., Perrings, C., & Chowell, G. (2017). Forecasting the 2001 foot-and-mouth disease epidemic in the UK. Ecohealth, 15(2), 338–347.CrossRefGoogle Scholar
  38. Tan, W. Y. (2000). Stochastic modeling of AIDS epidemiology and HIV pathogenesis. River Edge, NJ: World Scientific.zbMATHGoogle Scholar
  39. The World Health Organization. (2016). Situation report for 29 July 2016. The 2016 Yellow fever epidemic in Angola. Available from:
  40. The World Health Organization Emergency Response Team. (2014). Ebola virus disease in West Africa - The first 9 months of the epidemic and forward projections. New England Journal of Medicine, 371(16), 1481–1495.CrossRefGoogle Scholar
  41. Towers, S., Brauer, F., Castillo-Chavez, C., Falconar, A. K., Mubayi, A., & Romero-Vivas, C. M. (2016). Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 17, 50–55.CrossRefGoogle Scholar
  42. Turner, M. E. Jr., Bradley, E. L. Jr., Kirk, K., & Pruitt, K. M. (1976). A theory of growth. Mathematical Biosciences, 29, 367–373.CrossRefGoogle Scholar
  43. van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288–303.CrossRefGoogle Scholar
  44. van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48.MathSciNetCrossRefGoogle Scholar
  45. Verhulst, P. J. (1838). Notice sur la loi que la population suit dan sons accroissement. Correspondance mathématique et physique, 10, 113–121.Google Scholar
  46. Viboud, C., Simonsen, L., Chowell, G. (2016). A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15, 27–37.CrossRefGoogle Scholar
  47. Wallinga, J., & Lipsitch, M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of Royal Society B, 274, 599–604.Google Scholar
  48. Wang, X. S., Wu, J., & Yang, Y. (2012). Richards model revisited: Validation by and application to infection dynamics. Journal of Theoretical Biology, 313, 12–19.MathSciNetCrossRefGoogle Scholar
  49. Yule, G. U. (1925). The growth of population and the factor which controls it. Journal of the Royal Statistical Society: Series A, 88, 1–58.CrossRefGoogle Scholar
  50. Zhang, Q., Sun, K., Chinazzi, M., y Piontti, A. P., Dean, N. E., Rojas, D. P., et al. (2017). Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences, 114(22), E4334–E4343.CrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Ping Yan
    • 1
    • 2
  • Gerardo Chowell
    • 3
  1. 1.Infectious Diseases Prevention and Control BranchPublic Health Agency of CanadaOttawaCanada
  2. 2.Department of Statistics and Actuarial Science, Faculty of MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations