Advertisement

Some Statistical Issues

  • Ping Yan
  • Gerardo Chowell
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 70)

Abstract

All the models presented in the previous chapters are parametric. They belong to different types and serve different purposes.

References

  1. Anderson, R. M., & May, R. M. (1991) Infectious diseases of humans, dynamics and control. Oxford: Oxford University Press.Google Scholar
  2. Anscombe, F. J. (1953) Contribution to the discussion of H. Hotelling’s paper. Journal of Royal Statistics Society (B), 15, 229–230.Google Scholar
  3. Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications (2nd ed.). London: The Griffin & Company Ltd.zbMATHGoogle Scholar
  4. Becker, N. G. (1989). Analysis of infectious disease data. London: Chapman and Hall/CRC.Google Scholar
  5. Becker, N. G., & Britton, T. (2001). Design issues of studies of infectious diseases. Journal of Statistical Planning and Inference, 96, 41–66.CrossRefGoogle Scholar
  6. Becker, N. G., & Hasofer, A. M. (1997). Estimation in epidemics with incomplete observations. Journal of the Royal Statistical Society: Series B, 59(2), 415–429.MathSciNetCrossRefGoogle Scholar
  7. Becker, N. G., Watson, L. F., & Carlin, J. B. (1991). A method of non-parametric back-projection and its application to AIDS data. Statistics in Medicine, 10, 1527–1542.CrossRefGoogle Scholar
  8. Brookmeyer, R., & Gail, M. H. (1994). AIDS epidemiology: A quantitative approach. New York, NY: Oxford University Press.Google Scholar
  9. Champredon, D., & Dushoff, J. (2015). Intrinsic and realized generation intervals in infectious-disease transmission. Proceedings of the Royal Society B, 282(1821), 2015–2026.CrossRefGoogle Scholar
  10. Chowell, G., Ammon, C. E., Hengartner, N. W., & Hyman, J. M. (2006). Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. Journal of Theoretical Biology, 241, 193–204.MathSciNetCrossRefGoogle Scholar
  11. Chowell, G., Shim, E., Brauer, F., Diaz-Duenas, P., Hyman, J. M., & Castillo-Chavez, C. (2006). Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: Application to the 2003 outbreak in Mexico. Statistics in Medicine, 25, 1840–1857.MathSciNetCrossRefGoogle Scholar
  12. Cook, R. J., & Lawless, J. F. (2007). The statistical analysis of recurrent events. New York, NY: Springer.zbMATHGoogle Scholar
  13. Cook, R. J., & Lawless, J. F. (2018). Multistate models for the analysis of life history data. New York, NY: Chapman and Hall/CRC.CrossRefGoogle Scholar
  14. Cox, D. R., & Donnelly, C. A. (2011). Principles of applied statistics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Daley, D. J., & Gani, J. (1999). Epidemic modelling, an introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28, 365–382.MathSciNetCrossRefGoogle Scholar
  17. Donnelly, C. A., & Ferguson, N. M. (1999). Statistical aspects of BSE and vCJD, models for epidemics. New York, NY: Chapman and Hall/CRC.zbMATHGoogle Scholar
  18. Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. New York, NY: CRC Press.zbMATHGoogle Scholar
  19. Farewell, V. T., Herzberg, A. M., James, K. W., Ho, L. M., & Leung, G. M. (2005). SARS incubation and quarantine times: When is an exposed individual known to be disease free? Statistics in Medicine, 24, 3431–3445.MathSciNetCrossRefGoogle Scholar
  20. Fine, P. E. M. (2003). The interval between successive cases of an infectious disease. American Journal of Epidemiology, 158(11), 1039–1047.CrossRefGoogle Scholar
  21. Godambe, V. P., & Heyde, C. C. (1987). Quasi-likelihood and optimal estimation. International Statistical Review, 55, 231–244.MathSciNetCrossRefGoogle Scholar
  22. Hohle, M., & Jørgensen, E. (2003). Estimating parameters for stochastic epidemics. Dina Research Report, 102. http://staff.math.su.se/hoehle/pubs/dina102.pdf
  23. Hope Simpson, R. E. (1948). The period of transmission in certain epidemic diseases: An observational method for its discovery. Lancet, 2, 755–760.CrossRefGoogle Scholar
  24. Kalbfleisch, J. G. (1985). Probability and statistical inference, vol 2: Statistical inference (2nd ed.) New York: Springer.CrossRefGoogle Scholar
  25. Kalbfleisch, J. D., & Lawless, J. F. (1989). Estimating the incubation time distribution and expected number of cases of transfusion-associated acquired immune deficiency syndrome. Transfusion, 29, 672–676.CrossRefGoogle Scholar
  26. Kalbfleisch, J. D., & Lawless, J. F. (1991). Regression models for right truncated data with applications to AIDS incubation times and reporting lags. Statistica Sinica, 1, 19–32.zbMATHGoogle Scholar
  27. Kenah, E., Lipsitch, M., & Robins, J. M. (2008). Generation interval contraction and epidemic data analysis. Mathematical Biosciences, 213, 71–79.MathSciNetCrossRefGoogle Scholar
  28. Kosambi, D. D. (1949). Characteristic properties of series distributions. Proceedings of the National Institute for Science, India, 15, 109–113.Google Scholar
  29. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York, NY: Springer.CrossRefGoogle Scholar
  30. Lagakos, S. W., Rarraj, L. M., & De Gruttola, V. (1988). Nonparametric analysis of truncated survival data, with application to AIDS. Biometrika, 75(5), 15–23.MathSciNetGoogle Scholar
  31. Lawless, J. F. (1994). Adjustments for reporting delays and the prediction of occurred but not reported events. The Canadian Journal of Statistics, 22(1), 15–31.MathSciNetCrossRefGoogle Scholar
  32. Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). New York, NY: Wiley.zbMATHGoogle Scholar
  33. Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.MathSciNetCrossRefGoogle Scholar
  34. Lindsey, J. K. (2001). Nonlinear models in medical statistics. Oxford statistical science series (Vol. 24). Oxford: Oxford University Press.Google Scholar
  35. Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., James, L., et al. (2003). Transmission dynamics and control of severe acute respiratory syndrome. Science, 300, 1966–1970.CrossRefGoogle Scholar
  36. Lui, K. J., Lawrence, D. N., Morgan, W. M., Peterman, T. A., Haverkos, H. W., & Bregrnan, D. J. (1986). A model-based approach for estimating the mean incubation period of transfusion-associated acquired immunodeficiency syndrome. Proceedings of the National Academy of Sciences, 83, 3051–3055.Google Scholar
  37. McCullagh, P., & Nelder, J. A. (1983). Generalized linear models. London: Chapman and Hall.CrossRefGoogle Scholar
  38. Medley, G. F., Anderson, R. M., Cox, D. R., & Billard, I. (1987). Incubation period of AIDS in patients infected via blood transfusion. Nature, 328(7), 19–21.Google Scholar
  39. Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.MathSciNetCrossRefGoogle Scholar
  40. Nishiura, H. (2010). Time variations in the generation time of an infectious diseases: Implications for sampling to appropriately quantify transmission potential. Mathematical Biosciences & Engineering, 7(4), 851–869.MathSciNetCrossRefGoogle Scholar
  41. Pickles, W. (1939). Epidemiology in country practice. Bristol: John Wright and Sons.Google Scholar
  42. Qin, J. (2017). Biased sampling. In Over-identified parameter problems and beyond (ICSA book series in statistics). Springer Nature Singapore. https://doi.org/10.1007/978-981-10-4856-2_1.zbMATHGoogle Scholar
  43. Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmuller, U., et al. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 1923–1929.CrossRefGoogle Scholar
  44. Rida, W. N. (1991). Asymptotic properties of some estimators for the infection rate in the general stochastic epidemic. Journal of Royal Statistical Society (B), 53, 209–283.MathSciNetzbMATHGoogle Scholar
  45. Roberts, G. M., & Heesterbeek, J. A. P. (2007). Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. Journal of Mathematical Biology, 55, 803–816.MathSciNetCrossRefGoogle Scholar
  46. Rohatgi, A., (2018). WebPlotDigitizer Version: 4.1. Austin, TX.Google Scholar
  47. Roosa, K., & Chowell, G. (2019). Assessing parameter identifiability in compartmental dynamic models using a computational approach: Application to infectious disease transmission models. Theoretical Biology and Medical Modelling, 16(1), 1.CrossRefGoogle Scholar
  48. Smirnova, A., & Chowell, G. (2017). A primer on stable parameter estimation and forecasting in epidemiology by a problem-oriented regularized least squares algorithm. Infectious Disease Modeling, 2(2), 268–275.CrossRefGoogle Scholar
  49. Sprott, D. A. (2000). Statistical inference in science. New York, NY: Springer.zbMATHGoogle Scholar
  50. Svensson, A. A. (2007). A note on generation times in epidemic models. Mathematical Biosciences, 208, 300–311.MathSciNetCrossRefGoogle Scholar
  51. Tariq, A., Roosa, K., Mizumoto, K., & Chowell, G. (2019). Assessing reporting delays and the effective reproduction number: The 2018–19 Ebola epidemic in DRC, May 2018-January 2019. Epidemics. https://doi.org/10.1016/j.epidem.2019.01.003 CrossRefGoogle Scholar
  52. Tuite, A. R., Greer, A. L., Whelan, M., Winter, A. L., Yan, P., Wu, J, et al. (2010). Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Canadian Medical Association Journal, 182, 131–136.CrossRefGoogle Scholar
  53. van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48.MathSciNetCrossRefGoogle Scholar
  54. Wald, A. (1943). A method of estimating plane vulnerability based on damage pf survivors. Statistical Research Group, Columbia University. CRC (Vol. 432). Arlington County, VA: Center for Naval Analyses.Google Scholar
  55. Wallinga, J., & Lipsitch, M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of Royal Society B, 274, 599–604.Google Scholar
  56. Wang, M. C. (2005) Length bias. In Encyclopedia of biostatistics. New York, NY: Wiley. https://doi.org/10.1002/0470011815.b2a11044
  57. White, L. F., & Pagano, M. (2008). A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Statistics in Medicine, 27, 2999–3016.MathSciNetCrossRefGoogle Scholar
  58. Yan, P., & Zhang, F. (2018). A case study of nonlinear programming approach for repeated testing of HIV in a population stratified by subpopulations according to different risks of new infections. Operations Research for Health Care. https://doi.org/10.1016/j.orhc.2018.03.007 CrossRefGoogle Scholar
  59. Yan, P., Zhang, F., & Wand, H. (2011). Using HIV diagnostic data to estimate HIV incidence: Method and simulation. Statistical Communications in Infectious Diseases, 3, 1.MathSciNetCrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Ping Yan
    • 1
    • 2
  • Gerardo Chowell
    • 3
  1. 1.Infectious Diseases Prevention and Control BranchPublic Health Agency of CanadaOttawaCanada
  2. 2.Department of Statistics and Actuarial Science, Faculty of MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations