Behaviors of a Disease Outbreak During the Initial Phase and the Branching Process Approximation

  • Ping Yan
  • Gerardo Chowell
Part of the Texts in Applied Mathematics book series (TAM, volume 70)


We consider that at the beginning, t = 0, there is no disease. We call the system at this condition the disease-free equilibrium. We assume that the entire population is susceptible. The size of the susceptible population is denoted by m.


  1. Allen, L. J. (2010). An introduction to stochastic processes with applications to biology. Boca Raton, FL: CRC Press.Google Scholar
  2. Anderson, D., & Watson, R. (1980). On the spread of a disease with gamma distributed latent and infectious periods. Biometrika, 67(1), 191–198.CrossRefGoogle Scholar
  3. Anderson, R. M., & May, R. M. (1991) Infectious diseases of humans, dynamics and control. Oxford: Oxford University Press.Google Scholar
  4. Arita, I., Shafa, E., & Kader, A. (1970). Role of hospital in smallpox outbreak in Kuwait. American Journal of Public Health and the Nations Health, 60(10), 1960–1966.CrossRefGoogle Scholar
  5. Assiri, A., McGeer, A., Perl, T. M., Price, C. S., Al Rabeeah, A. A., Cummings, D. A., et al. (2013). Hospital outbreak of Middle East respiratory syndrome coronavirus. New England Journal of Medicine, 369(5), 407–416.CrossRefGoogle Scholar
  6. Bacaër, N., & Abdurahman, X. (2008). Resonance of the epidemic threshold in a periodic environment. Journal of Mathematical Biology, 57, 649–673.MathSciNetCrossRefGoogle Scholar
  7. Banks, R. B. (1994). Growth and diffusion phenomena: Mathematical frameworks and applications. Berlin: Springer.CrossRefGoogle Scholar
  8. Bartlett, M. S. (1955). An introduction to stochastic processes. London: Cambridge University Press.zbMATHGoogle Scholar
  9. Barttlet, M. S. (1961). Stochastic population models in ecology and epidemiology. London: Methuen and Co. Ltd.Google Scholar
  10. Becker, N. G. (1989). Analysis of infectious disease data. London: Chapman and Hall/CRC.Google Scholar
  11. Bhattacharya, R. N., & Waymire, E. C. (1990). Stochastic processes with applications. New York, NY: Wiley.zbMATHGoogle Scholar
  12. Borel, É. (1942). Sur l’emploi du théorème de Bernoulli pour faciliter le calcul d’une infinité de coefficients. Application au problème de l’attente à un guichet. Comptes rendus de l’Académie des Sciences, 214, 452–456.MathSciNetzbMATHGoogle Scholar
  13. Brauer, F. (2006). Some simple epidemic models. Mathematical Biosciences and Engineering, 3, 1–15.MathSciNetCrossRefGoogle Scholar
  14. Castillo-Chavez C., Feng, Z., & Huang, W. (2002). On the computation Ro and its role on global stability. In C. Castillo-Chavez, P. van den Driessche, D. Kirschner, & A.-A. Yakubu (Eds.), Mathematical approaches for emerging and reemerging infectious diseases: An introduction, IMA (Vol. 125, pp. 229–250). Berlin: Springer.CrossRefGoogle Scholar
  15. Chowell, G., Hincapie-Palacio, D., Ospina, J., Pell, B., Tariq, A., Dahal, S., et al. (2016). Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics. PLOS Currents Outbreaks, 8.
  16. Chowell, G., Viboud, C., Hyman, J. M., & Simonsen, L. (2015). The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Currents, 7.
  17. Corless, R. M., Gonnet, G. H., Hare, D. G. E., Jeffery, D. J., & Knuth, D. E. (1996). On the Lambert W function. Advances in Computational Mathematics, 5, 329–359.MathSciNetCrossRefGoogle Scholar
  18. Daley, D. J., & Gani, J. (1999). Epidemic modelling, an introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Mathematical and computational biology (Vol. 5). Chichester: Wiley.zbMATHGoogle Scholar
  20. Dietz, K. (1995). Some problems in the theory of infectious diseases transmission and control. In D. Mollison (Ed.), Epidemic models: Their structure and relation to data (pp. 3–16). Cambridge: Cambridge University Press.Google Scholar
  21. Dion, J. P. (1975). Estimation of the variance of a branching process. The Annuals of Statistics, 3(5), 1183–1187.MathSciNetCrossRefGoogle Scholar
  22. Feller, W. (1966). An introduction to probability theory and its applications. New York, NY: Wiley.zbMATHGoogle Scholar
  23. Fenner, F., Henderson, D. A., Arita, I., Jezĕk, Z., & Ladnyi, I. D. (1988). Smallpox and its eradication. Geneva: World Health Organization.Google Scholar
  24. Goh, K. T., Cutter, J., Heng, B. H., Ma, S., Koh, B. K., Kwok, C., et al. (2006). Epidemiology and control of SARS in Singapore. Annals-Academy of Medicine Singapore, 35(5), 301.Google Scholar
  25. Haccou, P., Jagers, P., & Vatutin, V. (2005). Branching processes: Variation, growth, and extinction of populations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Harris, T. (1948). Branching processes. Annals of Mathematical Statistics, 19, 474–494.MathSciNetCrossRefGoogle Scholar
  27. Harris, T. (1963). The Theory of Branching Processes. Berlin: Springer.CrossRefGoogle Scholar
  28. Heyde, C. C. (1974). On estimating the variance of the offspring distribution in a simple branching process. Advances in Applied Probability, 6(3), 421–433.MathSciNetCrossRefGoogle Scholar
  29. Hope Simpson, R. E. (1948). The period of transmission in certain epidemic diseases: An observational method for its discovery. Lancet, 2, 755–760.CrossRefGoogle Scholar
  30. Jagers, P. (1975). Branching processes with biological applications. London: Wiley.zbMATHGoogle Scholar
  31. Karlin, S., & Taylor, H. M. (1975). A first course in stochastic processes (2nd ed.). Cambridge, MA: Academic Press.zbMATHGoogle Scholar
  32. Kendall, D. (1956). Deterministic and stochastic epidemics in closed populations. In Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 4, pp. 149–165). Berkeley, CA: University of California Press.Google Scholar
  33. Marshall, A. W., & Olkin, I. (2007). Life distributions, structure of nonparametric, semiparametric and parametric families. New York, NY: Springer.zbMATHGoogle Scholar
  34. Martin-Löf, A. (1988). The final size of a nearly critical epidemic, and the first passage time of a Wienner process to a parabolic barrier. Journal of Applied Probability, 35, 671–682.CrossRefGoogle Scholar
  35. Mode, C. J., & Sleeman, C. K. (2000). Stochastic processes in epidemiology, HIV/AIDS, other infectious diseases and computers. Singapore: World Scientific.CrossRefGoogle Scholar
  36. Nåsell, I. (1995). The threshold concept in stochastic and endemic models. In D. Mollison (Ed.), Epidemic models: Their structure and relation to data (pp. 71–83). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  37. Nishiura, H., Yan, P., Sleeman, C. K., & Mode, C. J. (2012). Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks. Journal of Theoretical Biology, 294, 48–55.MathSciNetCrossRefGoogle Scholar
  38. Roberts, G. M., & Heesterbeek, J. A. P. (2007). Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. Journal of Mathematical Biology, 55, 803–816.MathSciNetCrossRefGoogle Scholar
  39. Smirnova, A., deCamp, L., & Chowell, G. (2017). Forecasting epidemics through nonparametric estimation of time-dependent transmission rates using the SEIR model. Bulletin of Mathematical Biology.
  40. Varia, M., Wilson, S., Sarwal, S., McGeer, A., Gournis, E., & Galanis, E. (2003). Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada. Canadian Medical Association Journal, 169(4), 285–292.Google Scholar
  41. Viboud, C., Bjornstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A., & Grenfell, B. T. (2006). Synchrony, waves, and spatial hierarchies in the spread of influenza. Science, 312(5772), 447–451.CrossRefGoogle Scholar
  42. Viboud, C., Simonsen, L., Chowell, G. (2016). A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15, 27–37.CrossRefGoogle Scholar
  43. Waugh, W. A. O’N. (1958). Conditioned Markov processes. Biometrika, 45(1–2), 241–249.MathSciNetCrossRefGoogle Scholar
  44. White, L. F., & Pagano, M. (2008). A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Statistics in Medicine, 27, 2999–3016.MathSciNetCrossRefGoogle Scholar
  45. Yan, P. (2008a). Distribution theory, stochastic processes and infectious disease modelling. In F. Brauer, P. van den Driessche, & J. Wu (Eds.), Mathematical epidemiology. Lecture notes in mathematics (Vol. 1945). Berlin: Springer.Google Scholar
  46. Yan, P. (2008b). Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. Journal of Theoretical Biology, 251, 238–252.MathSciNetCrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Ping Yan
    • 1
    • 2
  • Gerardo Chowell
    • 3
  1. 1.Infectious Diseases Prevention and Control BranchPublic Health Agency of CanadaOttawaCanada
  2. 2.Department of Statistics and Actuarial Science, Faculty of MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations