Advertisement

Random Counts and Counting Processes

  • Ping Yan
  • Gerardo Chowell
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 70)

Abstract

We now turn our attention to the population level dynamics and ask phenomenological questions. First, many important measures in the study of infectious diseases are count variables N, taking integer values n = 0, 1, 2, ….

References

  1. Allen, L. J. (2010). An introduction to stochastic processes with applications to biology. Boca Raton, FL: CRC Press.Google Scholar
  2. Andersen, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical models based on counting processes. New York, NY: Springer.CrossRefGoogle Scholar
  3. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random network. Science, 286, 509–512.MathSciNetCrossRefGoogle Scholar
  4. Bartlett, M. S. (1955). An introduction to stochastic processes. London: Cambridge University Press.zbMATHGoogle Scholar
  5. Bhattacharya, R. N., & Waymire, E. C. (1990). Stochastic processes with applications. New York, NY: Wiley.zbMATHGoogle Scholar
  6. Bondesson, L. (1979). On generalized gamma and generalized negative binomial convolutions, part II. Scandinavian Actuarial Journal, 2–3, 147–166.CrossRefGoogle Scholar
  7. Cook, R. J., & Lawless, J. F. (2007). The statistical analysis of recurrent events. New York, NY: Springer.zbMATHGoogle Scholar
  8. Cresswell, W. L., & Froggatt, P. (1963). The causation of bus driver accidents. London: Oxford University Press.Google Scholar
  9. Crump, K. (1975). On point processes having an order statistic structure. Sankhya, Series A, 37, 396–404.MathSciNetzbMATHGoogle Scholar
  10. Dietz, K. (1995). Some problems in the theory of infectious diseases transmission and control. In D. Mollison (Ed.), Epidemic models: Their structure and relation to data (pp. 3–16). Cambridge: Cambridge University Press.Google Scholar
  11. Farrington, C. P., & Grant, A. D. (1999). The distribution of time to extinction in subcritical branching processes: Applications to outbreaks of infectious disease. Journal of Applied Probability, 36, 771–779MathSciNetCrossRefGoogle Scholar
  12. Farrington, C. P., Kanaan, M., & Gay, J. N. (2003). Branching process models for surveillance of infectious diseases controlled by mass vaccination. Biostatistics, 4, 279–295.CrossRefGoogle Scholar
  13. Feller, W. (1943). On a generalized class of contagious distributions. Annuals of Mathematical Statistics, 14, 389–400.CrossRefGoogle Scholar
  14. Fleming, T. R., & Harrington, D. P. (1991). Counting processes and survival analysis. New York, NY: Wiley.zbMATHGoogle Scholar
  15. Greenwood, M., & Yule, G. (1920). An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to occurrence of multiple attacks of diseases or of repeated accidents. Journal of the Royal Statistical Society A, 83, 255–279.CrossRefGoogle Scholar
  16. Irwin, J. O. (1941). Discussion on chambers and Yule’s paper. Journal of Royal Statistical Society, 7(2), 101–109.Google Scholar
  17. Johnson, N., Kotz, S., & Kemp, A. W. (1993). Univariate discrete distributions (2nd ed.). New York, NY: Wiley.zbMATHGoogle Scholar
  18. Karlis, D., & Xekalaki, E. (2005). Mixed Poisson distributions. International Statistical Review, 73(1), 35–58.CrossRefGoogle Scholar
  19. Kosambi, D. D. (1949). Characteristic properties of series distributions. Proceedings of the National Institute for Science, India, 15, 109–113.Google Scholar
  20. Liljeros, F., Edling, C. R., & Amaral, L. A. N. (2003). Sexual networks: Implications for the transmission of sexually transmitted infections. Microbes and Infection, 3, 189–196.CrossRefGoogle Scholar
  21. Lord, D., & Geedipally, R. S. (2011). The negative binomial–Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros. Accident Analysis & Prevention, 43, 1738–1742.CrossRefGoogle Scholar
  22. Lynch, J. (1988). Mixtures, generalized convexity and balayages. Scandinavian Journal of Statistics, 15, 203–210.MathSciNetzbMATHGoogle Scholar
  23. McKendrick, A. G. (1925). The applications of mathematics to medical problems. Proceedings of Edinburgh Mathematical Society, 44, 98–130.Google Scholar
  24. Panjer, H. H., & Willmot, G. E. (1982). Recursions for compound distributions. ASTIN Bulletin, 25(1), 5–17.MathSciNetCrossRefGoogle Scholar
  25. Shaked, M. (1980). On mixtures from exponential families. Journal of Royal Statistical Society B, 42, 192–198.MathSciNetzbMATHGoogle Scholar
  26. Simon, H. A. (1955). On a class of skew distribution functions. Biometrika, 42, 425–440.MathSciNetCrossRefGoogle Scholar
  27. Simon, L. J. (1962). An introduction to the negative binomial distribution and its applications. Proceedings, Casuality Acturial Society (No. 91, Vol. XLIX, Part 1).Google Scholar
  28. Stumpf, M. Wiuf, C., & May, R. (2005). Subset of scale-free networks are not scale free: Sampling properties of networks. Proceedings of the National Academy of Sciences, 102, 4221–4224.Google Scholar
  29. Willmot, G. E. (1993). On recursive evaluation of mixed Poisson probabilities and related quantities. Scandnavian Acturarial Journal, 2, 114–133.MathSciNetzbMATHGoogle Scholar
  30. Xekalaki, E. (1983). The univariate generalized Waring distribution in relation to accident theory: Proneness, spells or contagion? Biometrics, 39(3), 887–895.CrossRefGoogle Scholar
  31. Xekalaki, E. (2014). On the distribution theory of over-dispersion. Journal of Statistical Distributions and Applications, 1, 19.CrossRefGoogle Scholar
  32. Xekalaki, E., & Zografi, M. (2008). The generalized waring process and its application. Communications in Statistics—Theory and Methods, 37(12), 1835–1854.MathSciNetCrossRefGoogle Scholar
  33. Xekalaki, E. A., & Panaretos, J. (2006). On the association of the Pareto and the Yule distribution. Theory of Probability and Its Applications, 33(1), 191–195.MathSciNetCrossRefGoogle Scholar
  34. Zipf, G. K. (1949). Human behaviour and the principle of least effort. Cambridge, MA: Addison-Wesley.Google Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Ping Yan
    • 1
    • 2
  • Gerardo Chowell
    • 3
  1. 1.Infectious Diseases Prevention and Control BranchPublic Health Agency of CanadaOttawaCanada
  2. 2.Department of Statistics and Actuarial Science, Faculty of MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations