Advertisement

Introduction

  • Ping Yan
  • Gerardo Chowell
Chapter
Part of the Texts in Applied Mathematics book series (TAM, volume 70)

Abstract

Infectious diseases ranging from respiratory (influenza, common cold, tuberculosis, the respiratory syncytial virus), vector-borne (plague, malaria, dengue, chikungunya, and Zika) to sexually transmitted (the human immunodeficiency virus, syphilis) have historically affected the human population in profound ways. For example, the Great Plague, well known as the Black Death, was caused by the bacterium Yersinia pestis and killed up to 200 million people in Eurasia and about 30–60% of Europe’s population during a 5-year span in the fourteenth century. At the time, the plague infection was thought to be due to some “bad air”, but it was not discovered that bites of infected fleas were behind the pandemic until late 1890s. If the human civilization had known about the transmission mechanisms behind the plague infections, the epidemic’s impact on morbidity and mortality could have been mitigated through basic public health interventions. This is to say that knowledge of the transmission processes and the natural history of infectious diseases in different environments represents invaluable actionable information for thwarting the spread of infectious diseases.

References

  1. Allen, L. J. (2010). An introduction to stochastic processes with applications to biology. Boca Raton, FL: CRC Press.Google Scholar
  2. Alonso, W. J., Nascimento, F. C., Chowell, G., & Schuck-Paim, C. (2018). We could learn much more from 1918 pandemic-the (mis)fortune of research relying on original death certificates. Annals of Epidemiology, 28(5), 289–292.CrossRefGoogle Scholar
  3. Anderson, R. M., & May, R. M. (1991) Infectious diseases of humans, dynamics and control. Oxford: Oxford University Press.Google Scholar
  4. Andersson, H., & Britton, T. (2012). Stochastic epidemic models and their statistical analysis (Vol. 151). New York, NY: Springer.zbMATHGoogle Scholar
  5. Becker, N. G. (2015). Modeling to inform infectious disease control. London: Chapman and Hall/CRC.CrossRefGoogle Scholar
  6. Biggerstaff, M., Alper, D., Dredze, M., Fox, S., Fung, I. C., Hickmann, K. S., et al. (2016). Results from the centers for disease control and prevention’s predict the 2013–2014 Influenza Season Challenge. BMC Infectious Diseases, 16, 357.CrossRefGoogle Scholar
  7. Brauer, F. (2006). Some simple epidemic models. Mathematical Biosciences and Engineering, 3, 1–15.MathSciNetCrossRefGoogle Scholar
  8. Brauer, F., & Castillo-Chávez, C. (2001). Mathematical models in population biology and epidemiology. New York, NY: Springer.CrossRefGoogle Scholar
  9. Brookmeyer, R., & Gail, M. H. (1994). AIDS epidemiology: A quantitative approach. New York, NY: Oxford University Press.Google Scholar
  10. Chowell, G. (2017). Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2, 379–398.CrossRefGoogle Scholar
  11. Chowell, G., Viboud, C., Hyman, J. M., & Simonsen, L. (2015). The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Currents, 7.  https://doi.org/10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261
  12. Chowell, G., Viboud, C., Simonsen, L., & Moghadas, S. (2016). Characterizing the reproduction number of epidemics with early sub-exponential growth dynamics. Journal of the Royal Society Interface, 13(123).  https://doi.org/10.1098/rsif.2016.0659 CrossRefGoogle Scholar
  13. Chretien, J. P., Swedlow, D., Eckstrand, I., Johansson, M., Huffman, R., & Hebbeler, A.(2015). Advancing epidemic prediction and forecasting: A new US government initiative. Online Journal of Public Health Informatics, 7(1), e13.CrossRefGoogle Scholar
  14. Dahal, S., Jenner, M., Dinh, L., Mizumoto, K., Viboud, C., & Chowell, G. (2017). Excess mortality patterns during 1918–1921 influenza pandemic in the state of Arizona, USA. Annals of Epidemiology, 28(5), 273–280.CrossRefGoogle Scholar
  15. Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Mathematical and computational biology (Vol. 5). Chichester: Wiley.zbMATHGoogle Scholar
  16. Dietz, K. (1995). Some problems in the theory of infectious diseases transmission and control. In D. Mollison (Ed.), Epidemic models: Their structure and relation to data (pp. 3–16). Cambridge: Cambridge University Press.Google Scholar
  17. Johnson, N. P., & Mueller, J. (2002). Updating the accounts: Global mortality of the 1918–1920 “Spanish” influenza pandemic. Bulletin of the History of Medicine, 76(1), 105–115.CrossRefGoogle Scholar
  18. Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  19. Kermack, W. O., & McKendrick, A. G. (1927). Contributions to the mathematical theory of epidemics, part I. Proceedings of the Royal Society London A, 115, 700–721.Google Scholar
  20. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., & Getz, W. M. (2005). Superspreading and the effect of individual variation on disease emergence. Nature, 438(7066), 355.CrossRefGoogle Scholar
  21. Manfredi, P., & D’Onofrio, A. (Eds.). (2013). Modeling the interplay between human behavior and the spread of infectious diseases. New York, NY: Springer.zbMATHGoogle Scholar
  22. Mills, C. E., Robins, J. M., & Lipsitch, M. (2004). Transmissibility of 1918 pandemic influenza. Nature, 432(7019), 904.CrossRefGoogle Scholar
  23. Ross, R. (1911). The prevention of malaria. London: John Murray.Google Scholar
  24. Ross, R. (1928). Studies on malaria. London: John Murray.Google Scholar
  25. Sattenspiel, L. (2009). The geographic spread of infectious diseases: Models and applications. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  26. Simonsen, L., Chowell, G., Andreasen, V., Gaffey, R., Barry, J., Olson, D., et al. (2018). A review of the 1918 herald pandemic wave: Importance for contemporary pandemic response strategies. Annals of Epidemiology, 28(5), 281–288.CrossRefGoogle Scholar
  27. Valleron, A. J., Cori, A., Valtat, S., Meurisse, S., Carrat, F., & Boelle, P. Y. (2010). Transmissibility and geographic spread of the 1889 influenza pandemic. Proceedings of the National Academy of Sciences, 107(19), 8778–8781.CrossRefGoogle Scholar
  28. van den Driessche, P., & Watmough, J. (2008). Further notes on the basic reproduction number. In: F. Brauer, P. van den Driessche, & J. Wu (Eds.) Mathematical epidemiology. Lecture notes in mathematics (Vol. 1945). Berlin: Springer.Google Scholar
  29. Viboud, C., Simonsen, L., Chowell, G. (2016). A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15, 27–37.CrossRefGoogle Scholar
  30. Viboud, C., Sun, K., Gaffey, R., Ajelli, M., Fumanelli, L., Merler, S., et al. (2018). The RAPID ebola forecasting challenge: Synthesis and lessons learnt. Epidemics, 22, 13–21.CrossRefGoogle Scholar
  31. Vynnycky, E., & White, R. (2010). An introduction to infectious disease modelling. Oxford: Oxford University Press.Google Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Ping Yan
    • 1
    • 2
  • Gerardo Chowell
    • 3
  1. 1.Infectious Diseases Prevention and Control BranchPublic Health Agency of CanadaOttawaCanada
  2. 2.Department of Statistics and Actuarial Science, Faculty of MathematicsUniversity of WaterlooWaterlooCanada
  3. 3.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations