Advertisement

Hybrid Connection Between Fuzzy Rough Sets and Ordered Fuzzy Numbers

  • Piotr ProkopowiczEmail author
  • Marcin Szczuka
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1000)

Abstract

Ordered Fuzzy Numbers (OFN) provide the ability of modeling data which is united with its trend. This paper presents a proposition of connecting the OFN model with the concept of information granules built as fuzzy rough sets. The procedure for gathering data and converting them into OFN is a new way of looking at transforming time series of sensor readings into granules. The introduction of the method is supported by an illustrative example. The introduced procedure for calculating similarity between OFNs allows hybridization with fuzzy rough set approach and derivation of lower and upper approximations of concepts.

Keywords

Ordered Fuzzy Number Fuzzy rough sets Hybridization Information granulation Time series 

References

  1. 1.
    Cornelis, C., De Cock, M., Radzikowska, A.M.: Fuzzy rough sets: from theory into practice. In: Handbook of Granular Computing (Chap. 24), pp. 533–552. Wiley, Hoboken (2008).  https://doi.org/10.1002/9780470724163.ch24
  2. 2.
    Cornelis, C., Jensen, R., Hurtado, G., Śleȩzak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180(2), 209–224 (2010).  https://doi.org/10.1016/j.ins.2009.09.008MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Czerniak, J.M., Dobrosielski, W.T., Filipowicz, I.: Comparing fuzzy numbers using defuzzificators on OFN shapes. In: Prokopowicz et al. [18], pp. 99–132.  https://doi.org/10.1007/978-3-319-59614-3_6CrossRefGoogle Scholar
  4. 4.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978).  https://doi.org/10.1080/00207727808941724MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3), 191–209 (1990).  https://doi.org/10.1080/03081079008935107CrossRefzbMATHGoogle Scholar
  6. 6.
    Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011).  https://doi.org/10.1016/j.engappai.2010.09.007CrossRefGoogle Scholar
  7. 7.
    Klir, G.J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets Syst. 91(2), 165–175 (1997).  https://doi.org/10.1016/S0165-0114(97)00138-3MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kosiński, W., Prokopowicz, P., Kacprzak, D.: Fuzziness - representation of dynamic changes by ordered fuzzy numbers. In: Seising, R. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives: Philosophy and Logic, Criticisms and Applications, pp. 485–508. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-93802-6_24CrossRefzbMATHGoogle Scholar
  9. 9.
    Kosiński, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers. IEEE Tran. Fuzzy Syst. 21(6), 1163–1169 (2013).  https://doi.org/10.1109/TFUZZ.2013.2243456CrossRefGoogle Scholar
  10. 10.
    Kosiński, W., Prokopowicz, P., Ślȩzak, D.: Ordered fuzzy numbers. Bull. Pol. Acad. Sci. Math. 51(3), 327–338 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kosiński, W., Prokopowicz, P., Ślȩzak, D.: Calculus with fuzzy numbers. In: Bolc, L., et al. (eds.) Intelligent Media Technology for Communicative Intelligence. LNCS, vol. 3490, pp. 21–28. Springer, Heidelberg (2005).  https://doi.org/10.1007/11558637_3CrossRefGoogle Scholar
  12. 12.
    Mares, M.: Weak arithmetics of fuzzy numbers. Fuzzy Sets Syst. 91(2), 143–153 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning About Data. Springer, Heidelberg (1991).  https://doi.org/10.1007/978-94-011-3534-4CrossRefzbMATHGoogle Scholar
  14. 14.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007).  https://doi.org/10.1016/j.ins.2006.06.006MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Prokopowicz, P.: Flexible and simple methods of calculations on fuzzy numbers with the ordered fuzzy numbers model. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 7894, pp. 365–375. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38658-9_33CrossRefGoogle Scholar
  16. 16.
    Prokopowicz, P.: Processing direction with ordered fuzzy numbers. In: Prokopowicz et al. [18], pp. 81–98.  https://doi.org/10.1007/978-3-319-59614-3_5CrossRefGoogle Scholar
  17. 17.
    Prokopowicz, P.: The use of ordered fuzzy numbers for modelling changes in dynamic processes. Inf. Sci. 470, 1–14 (2019).  https://doi.org/10.1016/j.ins.2018.08.045MathSciNetCrossRefGoogle Scholar
  18. 18.
    Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D. (eds.): Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński. Studies in Fuzziness and Soft Computing, vol. 356. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-59614-3CrossRefzbMATHGoogle Scholar
  19. 19.
    Prokopowicz, P., Pedrycz, W.: The directed compatibility between ordered fuzzy numbers - a base tool for a direction sensitive fuzzy information processing. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing. LNCS, vol. 9119, pp. 249–259. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-19324-3_23CrossRefGoogle Scholar
  20. 20.
    Prokopowicz, P., Ślȩzak, D.: Ordered fuzzy numbers: Definitions and operations. In: Prokopowicz et al. [18], pp. 57–79.  https://doi.org/10.1007/978-3-319-59614-3_4CrossRefGoogle Scholar
  21. 21.
    Qian, Y., Wang, Q., Cheng, H., Liang, J., Dang, C.: Fuzzy-rough feature selection accelerator. Fuzzy Sets Syst. 258, 61–78 (2015).  https://doi.org/10.1016/j.fss.2014.04.029MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets Syst. 126(2), 137–155 (2002).  https://doi.org/10.1016/S0165-0114(01)00032-XMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sanchez, E.: Solution of fuzzy equations with extended operations. Fuzzy Sets Syst. 12(3), 237–248 (1984)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ślȩzak, D., Grzegorowski, M., Janusz, A., Kozielski, M., Nguyen, S.H., Sikora, M., Stawicki, S., Wróbel, Ł.: A framework for learning and embedding multi-sensor forecasting models into a decision support system: a case study of methane concentration in coal mines. Inf. Sci. 451–452, 112–133 (2018).  https://doi.org/10.1016/j.ins.2018.04.026MathSciNetCrossRefGoogle Scholar
  25. 25.
    Szczuka, M., Skowron, A., Jankowski, A., Ślȩzak, D.: Granular computing: from granules to systems. In: Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–8. Wiley, Hoboken (2016).  https://doi.org/10.1002/047134608X.W8293
  26. 26.
    Wagenknecht, M., Hampel, R., Schneider, V.: Computational aspects of fuzzy arithmetics based on archimedean t-norms. Fuzzy Sets Syst. 123(1), 49–62 (2001).  https://doi.org/10.1016/S0165-0114(00)00096-8MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I. Inf. Sci. 8(3), 199–249 (1975).  https://doi.org/10.1016/0020-0255(75)90036-5MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zadeh, L.A. (ed.): Computing with Words: Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing, vol. 277. Springer, Heidelberg (2012)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mechanics and Applied Computer ScienceKazimierz Wielki UniversityBydgoszczPoland
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations