Advertisement

Local Properties of Strengthened Ordered Directional and Other Forms of Monotonicity

  • Mikel Sesma-SaraEmail author
  • Laura De Miguel
  • Radko Mesiar
  • Javier Fernandez
  • Humberto Bustince
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1000)

Abstract

In this study we discuss some of the recent generalized forms of monotonicity, introduced in the attempt of relaxing the monotonicity condition of aggregation functions. Specifically, we deal with weak, directional, ordered directional and strengthened ordered directional monotonicity. We present some of the most relevant properties of the functions that satisfy each of these monotonicity conditions and, using the concept of pointwise directional monotonicity, we carry out a local study of the discussed relaxations of monotonicity. This local study enables to highlight the differences between each notion of monotonicity. We illustrate such differences with an example of a restricted equivalence function.

Notes

Acknowledgments

This work is supported by the project TIN2016-77356-P (AEI/FEDER, UE), by the Public University of Navarra under the project PJUPNA13 and by Slovak grant APVV-14-0013.

References

  1. 1.
    Bedregal, B., Reiser, R., Bustince, H., Lopez-Molina, C., Torra, V.: Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms. Inf. Sci. 255, 82–99 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  3. 3.
    Beliakov, G., Calvo, T., Wilkin, T.: Three types of monotonicity of averaging functions. Knowl.-Based Syst. 72, 114–122 (2014).  https://doi.org/10.1016/j.knosys.2014.08.028CrossRefGoogle Scholar
  4. 4.
    Beliakov, G., Calvo, T., Wilkin, T.: On the weak monotonicity of Gini means and other mixture functions. Inf. Sci. 300, 70–84 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bustince, H., Barrenechea, E., Pagola, M.: Restricted equivalence functions. Fuzzy Sets Syst. 157(17), 2333–2346 (2006).  https://doi.org/10.1016/j.fss.2006.03.018MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bustince, H., Barrenechea, E., Sesma-Sara, M., Lafuente, J., Dimuro, G.P., Mesiar, R., Kolesárová, A.: Ordered directionally monotone functions. Justification and application. IEEE Trans. Fuzzy Syst. 26(4), 2237–2250 (2018).  https://doi.org/10.1109/TFUZZ.2017.2769486CrossRefGoogle Scholar
  7. 7.
    Bustince, H., Fernández, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 220, 69–77 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244(1), 300–308 (2015).  https://doi.org/10.1016/j.ejor.2015.01.018MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De Miguel, L., Sesma-Sara, M., Elkano, M., Asiain, M., Bustince, H.: An algorithm for group decision making using n-dimensional fuzzy sets, admissible orders and OWA operators. Inf. Fusion 37, 126–131 (2017).  https://doi.org/10.1016/j.inffus.2017.01.007CrossRefGoogle Scholar
  10. 10.
    Deckỳ, M., Mesiar, R., Stupňanová, A.: Deviation-based aggregation functions. Fuzzy Sets Syst. 332, 29–36 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Galar, M., Fernandez, J., Beliakov, G., Bustince, H.: Interval-valued fuzzy sets applied to stereo matching of color images. IEEE Trans. Image Process. 20(7), 1949–1961 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  13. 13.
    Lucca, G., Sanz, J., Dimuro, G., Bedregal, B., Asiain, M.J., Elkano, M., Bustince, H.: CC-integrals: Choquet-like Copula-based aggregation functions and its application in fuzzy rule-based classification systems. Knowl.-Based Syst. 119, 32–43 (2017).  https://doi.org/10.1016/j.knosys.2016.12.004CrossRefGoogle Scholar
  14. 14.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Bustince, H., Mesiar, R.: CF-integrals: a new family of pre-aggregation functions with application to fuzzy rule-based classification systems. Inf. Sci. 435, 94–110 (2018)CrossRefGoogle Scholar
  15. 15.
    Lucca, G., Sanz, J.A., Dimuro, G.P., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: Preaggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24(2), 260–272 (2016).  https://doi.org/10.1109/TFUZZ.2015.2453020CrossRefGoogle Scholar
  16. 16.
    Paternain, D., Fernandez, J., Bustince, H., Mesiar, R., Beliakov, G.: Construction of image reduction operators using averaging aggregation functions. Fuzzy Sets Syst. 261, 87–111 (2015).  https://doi.org/10.1016/j.fss.2014.03.008MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sesma-Sara, M., De Miguel, L., Roldán López de Hierro, A.F., Lafuente, J., Mesiar, R., Bustince, H.: Pointwise directional increasingness and geometric interpretation of directionally monotone functions. Information Sciences (Submitted)Google Scholar
  18. 18.
    Sesma-Sara, M., De Miguel, L., Pagola, M., Burusco, A., Mesiar, R., Bustince, H.: New measures for comparing matrices and their application to image processing. Appl. Math. Model. 61, 498–520 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sesma-Sara, M., Lafuente, J., Roldán, A., Mesiar, R., Bustince, H.: Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity. Fuzzy Sets Syst. 357, 151–172 (2019).  https://doi.org/10.1016/j.fss.2018.07.007MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sesma-Sara, M., Mesiar, R., Bustince, H.: Weak and directional monotonicity of functions on Riesz spaces to fuse uncertain data. Fuzzy Sets Syst. (In press).  https://doi.org/10.1016/j.fss.2019.01.019
  21. 21.
    Wei, G.: Some geometric aggregation functions and their application to dynamic multiple attribute decision making in the intuitionistic fuzzy setting. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 17(02), 179–196 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wilkin, T., Beliakov, G.: Weakly monotonic averaging functions. Int. J. Intell. Syst. 30(2), 144–169 (2015).  https://doi.org/10.1002/int.21692CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mikel Sesma-Sara
    • 1
    Email author
  • Laura De Miguel
    • 1
  • Radko Mesiar
    • 2
  • Javier Fernandez
    • 1
  • Humberto Bustince
    • 1
  1. 1.Public University of NavarraPamplonaSpain
  2. 2.Slovak University of TechnologyBratislavaSlovakia

Personalised recommendations