A Ranking Method of Hexagonal Fuzzy Numbers Based on Their Possibilistic Mean Values

  • Worrawate Leela-apiradeeEmail author
  • Phantipa Thipwiwatpotjana
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1000)


A hexagonal fuzzy number (HFN) with its membership function as a nonlinear function, which is a generalization of triangular fuzzy numbers, trapezoidal fuzzy numbers, linear pentagonal fuzzy numbers and linear hexagonal fuzzy numbers, is defined in this paper. Cardinality of HFN is applied to achieve an algorithm for classifying types of HFNs. In addition, we present a ranking method for those fuzzy numbers based on their possibilistic mean values. Therefore, an explicit formula of the possibilistic mean value of HFN is proposed.


Hexagonal fuzzy number Possibilistic mean value Ranking 



The authors would like to thank to the referees for valuable comments and suggestions.


  1. 1.
    Bodjanova, S.: Median value and median interval of a fuzzy number. Inf. Sci. 172, 73–89 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122, 315–326 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Christi, A., Malini, D.: Solving transportation problems with hexagonal fuzzy numbers using best candidates method and different ranking techniques. Int. J. Eng. Res. Appl. 6, 76–81 (2016)Google Scholar
  4. 4.
    Dhanam, K., Kalaiselvi, T.: Multi-item inventory model using hexagonal fuzzy number. Int. J. Math. Soft Comput. 6, 93–105 (2016)CrossRefGoogle Scholar
  5. 5.
    Dhanam, K., Parimaladevi, M.: Cost analysis on a probabilistic multiitem inventory model with ranking of circumcenter of the centroid of pentagonal fuzzy number. Int. J. Pure Appl. Math. 113, 1–9 (2017)Google Scholar
  6. 6.
    Dinagar, D.S., Kannan, J.R.: On fuzzy inventory model with allowable shortage. Int. J. Pure Appl. Math. 99, 65–76 (2015)CrossRefGoogle Scholar
  7. 7.
    Dinagar, D.S., Narayanan, U.H.: On determinant of hexagonal fuzzy number matrices. Int. J. Math. Appl. 4, 357–363 (2016)Google Scholar
  8. 8.
    Dinagar, D.S., Narayanan, U.H.: On inverse of hexagonal fuzzy number matrices. Int. J. Pure Appl. Math. 115, 147–158 (2017)Google Scholar
  9. 9.
    Elumalai, P., Prabu, K., Santhoshkumar, S.: Fuzzy transportation problem using hexagonal fuzzy numbers by robust ranking method. Emperor Int. J. Financ. Manag. Res. UGC Jr. 45308, 52–58 (2017)Google Scholar
  10. 10.
    Fullér, R., Majlender, P.: On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets Syst. 136, 363–374 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghadle, K.P., Pathade, P.A.: Solving transportation problem with generalized hexagonal and generalized octagonal fuzzy numbers by ranking method. Glob. J. Pure Appl. Math. 13, 6367–6376 (2017)Google Scholar
  12. 12.
    Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31–43 (1986)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hanss, M.: Applied Fuzzy Arithmetic. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  14. 14.
    Hussain, R.J., Priya, A.: Solving fuzzy game problem using hexagonal fuzzy number. J. Comput. 1, 53–59 (2016)Google Scholar
  15. 15.
    Mondal, S.P., Mandal, M.: Pentagonal fuzzy number, its properties and application in fuzzy equation. Future Comput. Inform. J. 2, 110–117 (2017)CrossRefGoogle Scholar
  16. 16.
    Rajarajeswari, P., Sahaya, S.A.: Ranking of hexagonal fuzzy numbers for solving multi objective fuzzy linear programming problem. Int. J. Comput. Appl. 84, 14–19 (2013)Google Scholar
  17. 17.
    Sahaya, S.A., Revathy, M.: A new ranking on hexagonal fuzzy numbers. Int. J. Fuzzy Log. Syst. 6, 1–8 (2016)Google Scholar
  18. 18.
    Sahaya, S.A., Vijayalakshmi, K.R.: Fuzzy transportation problem using symmetric hexagonal fuzzy numbers. IOSR J. Math. 12, 76–81 (2016)CrossRefGoogle Scholar
  19. 19.
    Selvakumari, K., Sowmiya, G.: Fuzzy network problems using job sequencing technique in hexagonal fuzzy numbers. Int. J. Adv. Eng. Res. Dev. 4, 116–121 (2017)Google Scholar
  20. 20.
    Thamaraiselvi, A., Santhi, R.: Optimal solution of fuzzy transportation problem using hexagonal fuzzy numbers. Int. J. Sci. Eng. Res. 6, 40–45 (2015)Google Scholar
  21. 21.
    Vasanthi, L., Elakkiya, E.S.: Orthogonal fuzzy matrix using hexagonal fuzzy numbers. Int. J. Res. Appl. Sci. Eng. Technol. 6, 2349–2352 (2018)CrossRefGoogle Scholar
  22. 22.
    Venkatesan, A., Virginraj, A.: Algorithm for fully fuzzy linear system with hexegonal fuzzy number matrix by singular value decomposition. Int. J. Comput. Algorithms 3, 218–222 (2014)CrossRefGoogle Scholar
  23. 23.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Worrawate Leela-apiradee
    • 1
    Email author
  • Phantipa Thipwiwatpotjana
    • 2
  1. 1.Department of Mathematics and Statistics, Faculty of Science and TechnologyThammasat UniversityPathum ThaniThailand
  2. 2.Department of Mathematics and Computer Science, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations