Advertisement

An Interpretation of the Fuzzy Measure Associated with Choquet Calculus for a HIV Transference Model

  • Beatriz LaiateEmail author
  • Rosana M. Jafelice
  • Estevão Esmi
  • Laécio C. Barros
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1000)

Abstract

This paper presents two dynamics that describe the transference between the classes of symptomatic and asymptomatic of an HIV-seropositive population. These models can be formulated using Choquet calculus where the underlying fuzzy measure is intrisically connected with the phenomena, and that is the main focus of this article. In particular, the fuzzy measures associated with Choquet calculus are obtained from the transference rates in both cases: with or without antiretroviral treatment.

Notes

Acknowledgements

The authors would like to thank Prof. Dr. Francisco Hideo Aoki (HC-Unicamp-Brazil). This work was partially supported by CAPES under grant no. 1696945, by CNPq under grant no. 306546/2017-5, and by Fapesp under grant no. 2016/26040-7.

References

  1. 1.
    Anderson, R.M., Medley, G.F., May, R.M., Johnson, A.M.: A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. Math. Med. Biol. 3, 229–263 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avert: HIV and AIDS in Brazil. Global information and education on HIV and AIDS. https://www.avert.org/professionals/hiv-around-world/latin-america/brazil. Cited 15 Jan 2019
  3. 3.
    Barros, L.C., Bassanezi, R.C., Lodwick, W.A.: A first course in fuzzy logic. In: Fuzzy Dynamical Systems, and Biomathematics. Springer, Heidelberg (2017)Google Scholar
  4. 4.
    Battegay, M., Nüesch, R., Hirschel, B., Kaufmann, G.R.: Immunological recovery and antiretroviral therapy in HIV-1 infection. Lancet Inf. Dis. 6(5), 280–287 (2006)CrossRefGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention. About HIV/AIDS. https://www.cdc.gov/hiv/basics/whatishiv.html. Cited 27 Jan 2019
  6. 6.
    Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  7. 7.
    Herz, A.V.M., Bonhoeffer, S., Anderson, R.M., May, R.M., Nowak, M.A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Natl. Acad. Sci. 93, 7247–7251 (1996)CrossRefGoogle Scholar
  8. 8.
    Honig, C.S.: A integral de Labesgue e suas aplicacões. IMPA (1977)Google Scholar
  9. 9.
    Jafelice, R.M., Barros, L.C., Bassanezi, R.C.: Study of the dynamics of HIV under treatment considering fuzzy delay. Comp. Appl. Math. 33(1), 45–61 (2014).  https://doi.org/10.1007/s40314-013-0042-6MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jafelice, R.M., Barros, L.C., Bassanezi, R.C., Gomide, F.: Methodology to determine the evolution of asymptomatic HIV population using fuzzy set theory. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 13(1), 39–58 (2005).  https://doi.org/10.1142/S0218488505003308CrossRefzbMATHGoogle Scholar
  11. 11.
    Jafelice, R.M.: Modelagem Fuzzy para Dinâmica de Transferência de Soropositivos para HIV em Doenca Plenamente Manifesta. Thesis, Faculdade de Engenharia Elétrica e de Computacão, Unicamp (2003)Google Scholar
  12. 12.
    Laiate, B.: Cálculo de Choquet com Aplicacões em Dinâmica de Populaćões. Dissertation, Instituto de Matemática, Estatística e Computacão Científica, Unicamp (2017)Google Scholar
  13. 13.
    Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman and Hall/CRC, New York (2005)zbMATHGoogle Scholar
  14. 14.
    Perelson, A., Nelson, P.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999).  https://doi.org/10.1137/S0036144598335107MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sugeno, M.: A way to choquet calculus. IEEE Trans. Fuzzy Syst. 23, 1439–1457 (2015).  https://doi.org/10.1109/TFUZZ.2014.2362148CrossRefGoogle Scholar
  16. 16.
    Sugeno, M.: A note on derivatives of functions with respect to fuzzy measures. Fuzzy Sets Syst. 222, 1–17 (2013).  https://doi.org/10.1016/j.fss.2012.11.003MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    The Joint United Nations Programme on HIV/AIDS (UNAIDS). http://www.unaids.org. Cited 27 Dec 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Beatriz Laiate
    • 1
    Email author
  • Rosana M. Jafelice
    • 2
  • Estevão Esmi
    • 1
  • Laécio C. Barros
    • 1
  1. 1.Department of Applied MathematicsState University of CampinasCampinasBrazil
  2. 2.Federal University of UberlândiaUberlândiaBrazil

Personalised recommendations