Least Square Method with Quasi Linearly Interactive Fuzzy Data: Fitting an HIV Dataset

  • Nilmara J. Biscaia PintoEmail author
  • Estevão Esmi
  • Vinícius Francisco Wasques
  • Laécio C. Barros
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1000)


In this manuscript we propose a method to fit a dataset with uncertainty. These data are described by interactive fuzzy numbers. The relationship of interactivity is associated with the notion of joint possibility distribution. We focus on a specific type of interactivity namely linear interactivity. We use this concept to introduce a class of fuzzy numbers called quasi linearly interactive fuzzy numbers. We provide an application to fit a dataset of the HIV disease to illustrate the proposed method.



The authors would like to thank the financial support of CAPES under grant no 1691227 and Finance Code 001, CNPq under grants 142414/2017-4 and 306546/2017-5, and, FAPESP under grant no 2016/26040-7.


  1. 1.
    Barros, L.C., Bassanezi, R.C., Lodwick, W.A.: A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  2. 2.
    Barros, L.C., Bassanezi, R.C., Tonelli, P.A.: On the continuity of the Zadeh’s extension. In: Proceedings of IFSA 1997 Congress, pp. 1–6 (1997)Google Scholar
  3. 3.
    Buckingham, R.A.: Numerical Methods. Sir Isaac Pitman & Sons Ltd., London (1966)Google Scholar
  4. 4.
    Carlsson, C., Fullér, R., Majlender, P.: Additions of completely correlated fuzzy numbers. In: IEEE International Conference on Fuzzy Systems, vol. 1, pp. 535–539 (2004)Google Scholar
  5. 5.
    Celmins, A.: Least squares model fitting to fuzzy vector data. Fuzzy Sets Syst. 22, 245–269 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Diamond, P.: Fuzzy least squares. Inf. Sci. 46, 141–157 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Additions of interactive fuzzy numbers. IEEE (1981)Google Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to the Computerized Processing of Information. Springer, New York (1988)CrossRefGoogle Scholar
  9. 9.
    Fullér, R., Majlender, P.: On interactive fuzzy numbers. Fuzzy Sets Syst. 143, 355–369 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jafelice, R.S.M., Barros, L.C.C., Bassanezi, R.C.: Study of the dynamics of HIV under treatment considering fuzzy delay. Comput. Appl. Math. 33, 45–61 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Joint United Nations Programme on HIV/AIDS (UNAIDS): Knowledge is power - know your status, know your viral load (2018)Google Scholar
  12. 12.
    Laiate, B. Jafelice, R.M., Esmi, E., Barros, L.C.: Transference dynamics of HIV with or without treatment using choquet calculus. In: Proceedings of Fifth Brazilian Conference on Fuzzy Systems, pp. 323–334 (2018). (in Portuguese)Google Scholar
  13. 13.
    Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nguyen, H.T., Wu, B.: Fundamentals of Statistics with Fuzzy Data. Springer, Berlin (2006)CrossRefGoogle Scholar
  15. 15.
    Pinto, N.J.B., Wasques, V.F., Esmi, E., Barros, L.C.: Least squares method with interactive fuzzy coefficient: application on longitudinal data. In: Fuzzy Information Processing, pp 132–143. Springer, Cham (2018)Google Scholar
  16. 16.
    Seng, K.-Y., Nestorov, I., Vicini, P.: Fuzzy least squares for identification of individual pharmacokinetic parameters. IEEE Trans. Biomed. Eng. 56(12), 2796–2805 (2009)CrossRefGoogle Scholar
  17. 17.
    Takemura, K.: Fuzzy least squares regression analysis for social judgment study. J. Adv. Computat. Intell. Intell. Inform. 9(5), 461–466 (2005)CrossRefGoogle Scholar
  18. 18.
    Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. 6, 903–907 (1982)zbMATHGoogle Scholar
  19. 19.
    Torfi, F., Farahani, R.Z., Mahdavi, I.: Fuzzy least-squares linear regression approach to ascertain stochastic demand in the vehicle routing problem. Appl. Math. 2, 64–73 (2011)CrossRefGoogle Scholar
  20. 20.
    World Health Organization (WHO). Accessed Dec 2018
  21. 21.
    Wu, B., Tseng, N.-F.: A new approach to fuzzy regression models with application to business cycle analysis. Fuzzy Sets Syst. 130, 33–42 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-i, ii, iii. Inf. Sci. 8, 301–357 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nilmara J. Biscaia Pinto
    • 1
    Email author
  • Estevão Esmi
    • 1
  • Vinícius Francisco Wasques
    • 1
  • Laécio C. Barros
    • 1
  1. 1.Institute of Mathematics, Statistics and Scientific ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations