On Fuzzy Optimization Foundation

  • Laécio C. Barros
  • Nilmara J. B. PintoEmail author
  • Estevão Esmi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1000)


In this work we discuss the fuzzy optimization problem, in order to provide a mathematical approach to the foundation of optimization problem in the fuzzy context. By the Zadeh’s extension principle we revisit the decision method stated by Bellman and Zadeh.



The authors would like to thank the financial support of CNPq under grant 306546/2017-5, CAPES under grant no. 1691227, and, FAPESP under grant no. 2016/26040-7.


  1. 1.
    Barros, L.C., Bassanezi, R.C., Lodwick, W.A.: A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics. Springer, Berlin, Heidelberg (2017)zbMATHCrossRefGoogle Scholar
  2. 2.
    Barros, L.C., Bassanezi, R.C., Tonelli, P.A.: On the continuity of the Zadeh’s extension. In: Proceedings of the IFSA 1997 Congress, pp. 1–6 (1997)Google Scholar
  3. 3.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B141–B164 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bector, C.R., Chandra, S.: Fuzzy Mathematical Programming and Fuzzy Matrix Games. Studies in Fuzziness and Soft Computing, vol. 169. Springer, Berlin, Heidelberg (2005)zbMATHGoogle Scholar
  5. 5.
    Chalco-Cano, Y., Silva, G.N., Rufián-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Figueroa-García, J. C.: Linear programming with interval type-2 fuzzy right hand side parameters. In: NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6 (2008)Google Scholar
  7. 7.
    Figueroa-García, J.C., Hernandez, G.: Computing optimal solutions of a linear programming problem with interval type-2 fuzzy constraints. In: Hybrid Artificial Intelligent Systems, pp. 567–576 (2012)Google Scholar
  8. 8.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, New York (1995)zbMATHGoogle Scholar
  9. 9.
    Mjelde, K.M.: Fuzzy resource allocation. Fuzzy Sets Syst. 19(3), 239–250 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Mohamed, R.H.: The relationship between goal programming and fuzzy programming. Fuzzy Sets Syst. 89, 215–222 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Östermark, R.: Fuzzy linear constraints in the capital asset pricing model. Fuzzy Sets Syst. 30(2), 93–102 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Osuna-Gómez, R., Chalco-Cano, Y., Rufián-Lizana, A., Hernández-Jiménez, B.: Necessary and sufficient conditions for fuzzy optimality problems. Fuzzy Sets Syst. 296, 112–123 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y., Ruiz-Garzón, G.: Different optimum notions for fuzzy functions and optimality conditions associated. Fuzzy Optim. Decis. Making 17, 177–193 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Owsiński, J.W., Zadrozny, S., Kacprzyk, J.: Analysis of water use and needs in agriculture through a fuzzy programming model. In: Kacprzyk, J., Orlovski, S.A. (eds.) Optimization Models Using Fuzzy Sets and Possibility Theory, pp. 377–395. Springer, Dordrecht (1987)CrossRefGoogle Scholar
  16. 16.
    Pathak, V.D., Pirzada, U.M.: Necessary and sufficient optimality conditions for nonlinear fuzzy optimization problem. Int. J. Math. Sci. Educ. 4(1), 1–16 (2011)zbMATHGoogle Scholar
  17. 17.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets. The MIT Press, London (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Rommelfanger, H.: Fuzzy linear programming and applications. Eur. J. Oper. Res. 92, 512–527 (1996)zbMATHCrossRefGoogle Scholar
  19. 19.
    Sommer, G., Pollatschek, M.A.: A fuzzy programming approach to an air pollution regulation problem. Prog. Cybern. Syst. Res. 3, 303–313 (1978)zbMATHGoogle Scholar
  20. 20.
    Tang, J., Wang, D., Fung, R.Y.K., Yung, K.-L.: Understanding of fuzzy optimization: theories and methods. J. Syst. Sci. Complexity 17(1), 117–136 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Trappey, J.F.C., Richard Liu, C., Chang, T.C.: Theory and application in manufacturing, fuzzy non-linear programming (1988)Google Scholar
  22. 22.
    Verdegay, J.L.: Fuzzy mathematical programming. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, North Holland, Amsterdam (1982)Google Scholar
  23. 23.
    Verdegay, J.L.: Applications of fuzzy optimization in operational research. Control Cybern. 13(3), 229–239 (1984)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Werners, B.: Interactive multiple objective programming subject to flexible constraints. Eur. J. Oper. Res. 31, 342–349 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wu, H.C.: Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optim. Decis. Making 2, 61–73 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wu, H.C.: Saddle point optimality conditions in fuzzy optimization. Fuzzy Optim. Decis. Making 2, 261–273 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wu, H.C.: The optimality conditions for optimization problems with fuzzy-valued objective functions. Optimization 57(3), 476–489 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I, II, III. Inf. Sci. 8, 301–357 (1975)zbMATHCrossRefGoogle Scholar
  29. 29.
    Zimmermann, H.-J.: Applications of fuzzy set theory to mathematical programming. Inf. Sci. 36, 29–58 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zimmermann, H.-J.: Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2, 209–215 (1976)zbMATHCrossRefGoogle Scholar
  31. 31.
    Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laécio C. Barros
    • 1
  • Nilmara J. B. Pinto
    • 1
    Email author
  • Estevão Esmi
    • 1
  1. 1.Institute of Mathematics, Statistics and Scientific ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations