Advertisement

Unsteady Elastic Diffusion Oscillations of a Timoshenko Beam with Considering the Diffusion Relaxation Effects

  • O. A. Afanasieva
  • U. S. Gafurov
  • A. V. ZemskovEmail author
Conference paper
Part of the Structural Integrity book series (STIN, volume 8)

Abstract

The unsteady Timoshenko beam oscillations with mass transfer considering are investigated. In general formulation, the beam is under the action of tensile forces, bending moments and shearing forces given at its ends. The densities of diffusion fluxes are also given at ends. All the above factors are in the plane of the beam bend. To solve the obtained problem, the Laplace integral transform on time and Fourier series expansion on spatial coordinate are used.

Keywords

Mechanodiffusion Elastic diffusion Timoshenko beam Unsteady oscillations 

References

  1. 1.
    Zemskov, A.V., Tarlakovskii, D.V.: Postanovka zadachi o nestatsionarnykh uprugodiffuzionnykh kolebaniyakh balki Eilera-Bernulli. In: XXIV International Symposium “Dynamic and Technological Problems of a Mechanics of Constructions and Continuous Mediums” dedicated to A.G. Gorshkov, vol. 2, pp. 152–157 (2018) (in Russian)Google Scholar
  2. 2.
    Davydov, S.A., Zemskov, A.V.: Unsteady one-dimensional perturbations in multicomponent thermoelastic layer with cross-diffusion effect. J. Phys. Conf. Ser. 1129, 012009 (2018)CrossRefGoogle Scholar
  3. 3.
    Knyazeva, A.G.: Model of medium with diffusion and internal surfaces and some applied problems. J. Mater. Phys. Mech. 7(1), 29–36 (2004)Google Scholar
  4. 4.
    Mikhailova, E.Y., Tarlakovskii, D.V., Fedotenkov, G.V.: Obshchaya teoriya uprugikh obolochek. MAI, Moscow, Russia (2018) (in Russian)Google Scholar
  5. 5.
    Gorshkov, A.G., Medvedsky, A.L., Rabinsky, L.N., Tarlakovsky D.V.: Volny v sploshnykh sredakh. Fizmatlit, Moscow, Russia (2004) (in Russian)Google Scholar
  6. 6.
    Davydov, S.A., Zemskov, A.V., Tarlakovskii, D.V.: An elastic half-space under the action of one-dimensional time-dependent diffusion perturbations. Lobachevskii J. Math. 36(4), 503–509 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Igumnov, L.A., Tarlakovskii, D.V., Zemskov, A.V.: A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer. Lobachevskii J. Math. 38(5), 808–817 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. A. Afanasieva
    • 1
  • U. S. Gafurov
    • 1
    • 2
  • A. V. Zemskov
    • 1
    • 2
    Email author
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Institute of Mechanics, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations