Advertisement

Molecular Dynamics Investigation of Dislocation Slip in Pure Metals and Alloys

  • Alexander E. MayerEmail author
  • Vasiliy S. Krasnikov
Conference paper
Part of the Structural Integrity book series (STIN, volume 8)

Abstract

Averaged accounting of motion and interaction of dislocations is a natural way to describe plasticity at macroscale in those metals, in which dislocation slip is the main mechanism. This approach describes the inertness of the plasticity development, which is crucial in dynamic problems. On the other hand, such models demand for additional equations and parameters. Molecular dynamics (MD) simulation of elementary processes in the dislocation ensemble at nanoscale is prospective tool for construction of these equations and fitting their parameters. We present MD simulation of the motion of single dislocation lines in pure metals and metals with precipitates. Influence of local stresses on the motion of dislocations in pure metals is discussed. The dislocation motion equation is derived and their parameters are fitted to MD simulations for Al, Cu and Mg. Also we discuss the model for dynamic interaction of dislocation and precipitate intended for description of plasticity in alloys.

Keywords

Dislocation plasticity Motion of dislocations Drag coefficient Interaction with precipitate Molecular dynamics 

Notes

Acknowledgements

Investigation of aluminum is supported by the Russian Science Foundation (Project 18-71-10038); investigation of copper and magnesium is supported by the Ministry of Science and Higher Education of the Russian Federation (State task 3.2510.2017/4.6).

References

  1. 1.
    Austin, R.A., McDowell, D.L.: A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates. Int. J. Plast. 27(1), 1–24 (2011)CrossRefGoogle Scholar
  2. 2.
    Krasnikov, V.S., Mayer, A.E., Yalovets, A.P.: Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations. Int. J. Plast. 27(8), 1294–1308 (2011)CrossRefGoogle Scholar
  3. 3.
    Barton, N.R., Bernier, J.V., Becker, R., Arsenlis, A., Cavallo, R., Marian, J., Rhee, M., Park, H.-S., Remington, B.A., Olson, R.T.: A multiscale strength model for extreme loading conditions. J. Appl. Phys. 109(7), 073501 (2011)CrossRefGoogle Scholar
  4. 4.
    Malygin, G.A., Ogarkov, S.L., Andriyash, A.V.: A dislocation kinetic model of the formation and propagation of intense shock waves in crystals. Phys. Solid State 55(4), 787–795 (2013)CrossRefGoogle Scholar
  5. 5.
    Merzhievskii, L.A.: Deformation models under intense dynamic loading (review). Comb. Expl. Shock Waves 51(2), 269–283 (2015)CrossRefGoogle Scholar
  6. 6.
    Luscher, D.J., Mayeur, J.R., Mourad, H.M., Hunter, A., Kenamond, M.A.: Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions. Int. J. Plast 76, 111–129 (2016)CrossRefGoogle Scholar
  7. 7.
    Mayer, A.E., Khishchenko, K.V., Levashov, P.R., Mayer, P.N.: Modeling of plasticity and fracture of metals at shock loading. J. Appl. Phys. 113, 193508 (2013)CrossRefGoogle Scholar
  8. 8.
    Mayer, A.E., Borodin, E.N., Krasnikov, V.S., Mayer, P.N.: Numerical modelling of physical processes and structural changes in metals under intensive irradiation with use of CRS code: dislocations, twinning, evaporation and stress waves. J. Phys.: Conf. Ser. 552, 012002 (2014)Google Scholar
  9. 9.
    Mayer, A.E., Mayer, P.N., Krasnikov, V.S., Pogorelko, V.V.: Multiscale models of metal behaviour and structural change under the action of high-current electron irradiation. J. Phys.: Conf. Ser. 830, 012072 (2017)Google Scholar
  10. 10.
    Agranat, M.B., Ashitkov, S.I., Komarov, P.S.: Metal behavior near theoretical ultimate strength in experiments with femtosecond laser pulses. Mech. Solids 49(6), 643–648 (2014)CrossRefGoogle Scholar
  11. 11.
    Smith, R.F., Eggert, J.H., Rudd, R.E., Swift, D.C., Bolme, C.A., Collins, G.W.: High strain-rate plastic flow in Al and Fe. J. Appl. Phys. 110(12), 123515 (2011)CrossRefGoogle Scholar
  12. 12.
    Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., Fortov, V.E.: Unusual plasticity and strength of metals at ultra-short load durations. Phys.-Usp. 60(5), 490–508 (2017)CrossRefGoogle Scholar
  13. 13.
    Krasnikov, V.S., Kuksin, A.Yu, Mayer, A.E., Yanilkin, A.V.: Plastic deformation under high-rate loading: the multiscale approach. Phys. Solid State 52(7), 1386–1396 (2010)CrossRefGoogle Scholar
  14. 14.
    Norman, G.E., Yanilkin, A.V.: Homogeneous nucleation of dislocations. Phys. Solid State 53(8), 1614–1619 (2012)CrossRefGoogle Scholar
  15. 15.
    Krasnikov, V.S., Mayer, A.E.: Influence of local stresses on motion of edge dislocation in aluminum. Int. J. Plast. 101, 170–187 (2018)CrossRefGoogle Scholar
  16. 16.
    Krasnikov, V.S., Mayer, A.E.: Dislocation dynamics in aluminum containing θ’ phase: atomistic simulation and continuum modeling. Int. J. Plast. (2019)Google Scholar
  17. 17.
    Mayer, A., Krasnikov, V., Pogorelko V.: Limit of ultra-high strain rates in plastic response of metals. In: Gdoutos, E. (eds) Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics. ICTAEM 2018. Structural Integrity, vol. 5, pp. 273–278. Springer, Cham (2019)Google Scholar
  18. 18.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  19. 19.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010)CrossRefGoogle Scholar
  20. 20.
    Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012)CrossRefGoogle Scholar
  21. 21.
    Hirel, P.: Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations