Assessment and Evaluation of Body Temperature

  • Ewa Grodzinsky
  • Märta Sund Levander


Evaluation of body temperature is an important sign of health and disease, in everyday life, for medical decisions, for nursing care, and when ordering laboratory tests. When assessing body temperature, we has to understand thermoregulatory mechanisms, and also consider several ‘errors’, such as the influence of gender, age and the site of measurement. When definitions of normal body temperature as 37 °C and ‘fever’ as 38 °C was established in the 1900 century, little was known about thermoregulation, immunology, and microbiology. Although today there is a general acceptance of body temperature as a range rather than a fixed temperature, the 1871 definitions of normal body temperature and fever still are considered the world-wide norm.


  1. 1.
    Wunderlich CA, Seguin E. Medical thermometry and human temperature. New York: William Wood & Co; 1871. 280 p.Google Scholar
  2. 2.
    Mackowiak PA. Clinical thermometric measurements. In: Mackowiak PA, editor. Fever basic mechanisms and management, vol. 2. Philadelphia/New York: Lippincott Raven; 1997. p. 27–33.Google Scholar
  3. 3.
    Sund-Levander M, Grodzinsky E. Accuracy when assessing and evaluating body temperature in clinical practice: time for a change. Thermology International. 2012;22(Appendix 1 Number 3):25–32.Google Scholar
  4. 4.
    Mackowiak PA, Worden G. Carl Reinhold August Wunderlich and the evolution of clinical thermometry. Clin Infect Dis. 1994;18:458–67.CrossRefGoogle Scholar
  5. 5.
    Sund Levander M, Grodzinsky E. Variation in normal ear temperature. Am J Med Sci. 2017;354(4):370–8.CrossRefGoogle Scholar
  6. 6.
    Sund-Levander M, Forsberg C, Wahren LK. Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci. 2002;16(2):122–8.CrossRefGoogle Scholar
  7. 7.
    Galen, R and Gambino S, Beyond Normality: The Predictive Value and Efficiency of Medical Diagnosis, 1975, New York: Columbia University College of Physicians and Surgeons, John Willey& Sons.Google Scholar
  8. 8.
    Aschoff J, Kleitman N, Halberg F, Klinker L, Simpson H, Bonlen J. Seasonal changes in the circadian variation of oral temperature during wakefulness. Experientia. 1975;11:1296–8.Google Scholar
  9. 9.
    Sund-Levander M, Grodzinsky E, Loyd D, Wahren LK. Error in body temperature assessment related to individual variation, measuring technique and equipment. Int J Nurs Pract. 2004;10:216–23.CrossRefGoogle Scholar
  10. 10.
    Chamberlain JM, Terndrup TE, Alexander DT, Silverstone FA, Wolf-Klein G, O’Donell R, et al. Determination of normal ear temperature with an infrared emission detection thermometer. Ann Emerg Med. 1995;25:15–20.CrossRefGoogle Scholar
  11. 11.
    Baker F, Mitchell D, Driver H. Oral contraceptives alter sleep and raise body temperature in young women. Eur J Phys. 2001;424:729–37.CrossRefGoogle Scholar
  12. 12.
    Cabanac M. Thermiatrics and behaviour. In: Blatties CM, editor. Physiology and pathophysiology of temperature regulation. Singapore: World Scientific Publishing Co. Pte. Ltd; 1998. p. 108–25.Google Scholar
  13. 13.
    Elia M, Ritz P, Stubbs R. Total energy expenditure in the elderly. Eur J Clin Nutr. 2000;54(Suppl 3):S92–103.CrossRefGoogle Scholar
  14. 14.
    Frank S, Raja S, Bulcao C, Goldstein D. Age-related thermoregulatory differences during core cooling in humans. Am J Physiol Regul Integr Comp Physiol. 2000;279:349–54.CrossRefGoogle Scholar
  15. 15.
    Kenney W, Munce T. Invited review: aging and human temperature regulation. J Appl Physiol. 2003;95(6):2598–603.CrossRefGoogle Scholar
  16. 16.
    Minson C, Holowatz L, Wong B. Decreased nitric oxide- and axon reflex-mediated cutaneous vasodilation with age during local heating. J Appl Physiol. 2002;93:1644–9.CrossRefGoogle Scholar
  17. 17.
    Pierzga J, Frymoyer A, Kenney W. Delayed distribution of active vasodilation and altered vascular conductance in aged skin. J Appl Physiol. 2003;94:1045–53.CrossRefGoogle Scholar
  18. 18.
    Morita S, Matsuyama T, Ehara N, Miyamae N, Okada Y, Jo T, et al. Prevalence and outcomes of accidental hypothermia among elderly patients in Japan: data from the J-Point registry. Geriatr Gerontol Int. 2018;18:1427–32.CrossRefGoogle Scholar
  19. 19.
    Lu SS, Leasure A, Dai Y. A systematic review of body temperature variations in older people. J Clin Nurs. 2010;19(1–2):4–16.CrossRefGoogle Scholar
  20. 20.
    McGann KP, Marion GS, Lawrence D, Spangler JG. The influence of gender and race of mean body temperature in a population of healthy older adults. Arch Family Medicine. 1993;2:1265–7.CrossRefGoogle Scholar
  21. 21.
    Kiekkas P, Stefanopoulos N, Bakalis N, Kefaliakos A, Karanikolas M. Agreement of infrared temporal artery thermometry with other thermometry methods in adults: systematic review. J Clin Nurs. 2016;25:894–905.CrossRefGoogle Scholar
  22. 22.
    Sund-Levander M, Wahren LK. The impact of ADL-status, dementia and body mass index on normal body temperature in elderly nursing home residents. Arch Gerontol Geriatr. 2002;35:161–9.CrossRefGoogle Scholar
  23. 23.
    Bruunsgaard H, Pedersen M, Klarlund Pedersen BK. Aging and proinflammatory cytokines. Current Opinion in Haematology. 2001;8:131–6.CrossRefGoogle Scholar
  24. 24.
    Klegeris A, Schulzer M, Harper D, McGeer P. Increase in core body temperature of Alzheimer’s disease patients as a possible indicator of chronic neuroinflammation: a meta-analysis. Gerontology. 2007;53:7–11.CrossRefGoogle Scholar
  25. 25.
    Most E, Scheltens P, Van Someren E. Increased skin temperature in Alzheimer’s disease is associated with sleepiness. J Neural Transm. 2012;119:1185–94.CrossRefGoogle Scholar
  26. 26.
    Yeoh W, Lee J, Lim H, Gan W, Tan K. Re-visiting the tympanic membrane vicinity as core body temperature measurement site. PLOSone. 2017;17:1–21.Google Scholar
  27. 27.
    Mercer J. Glossary of terms for thermal physiology, third edition. Jpn J Physiol. 2001;51:245–80.Google Scholar
  28. 28.
    Pursell E, While A, Coomber B. Tympanic thermometry- normal temperature and reliability. Paediatric Nursing. 2009;21(6):40–3.Google Scholar
  29. 29.
    Betta V, Cascetta F, Sepe D. An assessment of infrared tympanic thermometers for body temperature measurement. Physiol Meas. 1997;18:215–25.CrossRefGoogle Scholar
  30. 30.
    Earp JK. Thermal gradients and shivering following open heart surgery. Dimens Crit Care Nurs. 1989;8(5):266–73.CrossRefGoogle Scholar
  31. 31.
    Sund-Levander M, Grodzinsky E. Time for a change to assess and evaluate body temperature in clinical practice. Int J Nurs Pract. 2009;15:241–9.CrossRefGoogle Scholar
  32. 32.
    Terndrup TE. An appraisal of temperature assessment by infrared emission detection tympanic thermometry. Ann Emerg Med. 1992;21(12):1483–92.CrossRefGoogle Scholar
  33. 33.
    EF DB. The many different temperatures of the human body and its parts. Western Journal of Surgery. 1951;59:476–90.Google Scholar
  34. 34.
    EFJ R, McEvoy H, Jungs A, Ubers J, Nachin M. New standards for devices used for the measurement of human body temperature. J Med Eng Technol. 2010;34(4):249–53.CrossRefGoogle Scholar
  35. 35.
    McCarthy P, Heusch A. The vagaries of ear temperature assessment. J Med Eng Technol. 2006;30(4):242–51.CrossRefGoogle Scholar
  36. 36.
    Sund-Levander M, Tingtröm P. Fever or not fever – that’s the question: a cohort study of simultaneously measured rectal and ear temperatures in febrile patients with suspected infection. Clinical Nursing Studies. 2018;6(2):48–54.Google Scholar
  37. 37.
    Chen ZM, Zhiang XB, Li Long M, Yu Pu M. Accuracy of infrared ear thermometry in children: a meta-analysis and systematic review. Clin Pediatr. 2014;53:1158–65.CrossRefGoogle Scholar
  38. 38.
    Niven D, Gaudet J, Laupland K, Mrklas K, Roberts D, Stelfox H. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann Intern Med. 2015;163:768–77.CrossRefGoogle Scholar
  39. 39.
    Geijer H, Udumyan R, Lohse G, Nilsagard Y. Temperature measurements with a temporal scanner: systematic review and meta-analysis. BMJ Open [Internet]. 2016; 6:e009509.CrossRefGoogle Scholar
  40. 40.
    Chiappin E, Venturini E, Remaschi G, Principi N, Longhi R, Tovo P, et al. 2016 update of the Italian pediatric society guidelines for management of fever in children. J Pediatr. 2017;180:177–83.CrossRefGoogle Scholar
  41. 41.
    Grodzinsky E, Sund Levander M, editors. Assessment of fever. Physiology, immunology, measurement in clinical practice. Malmö: Gleerups; 2015.Google Scholar
  42. 42.
    Smitz S, Giagoultsis T, Dewe W, Albert A. Comparison of rectal and infrared ear temperatures in older hospital inpatients. J Am Geriatr Soc. 2000;48:63–6.CrossRefGoogle Scholar
  43. 43.
    Zaleski M, Cooper M, Killuian M, Farnholtz-Province J, Gates K, Kamiensky M, et al. Clinical practice guideline: non-invasive temperature measurement. What method of non-invasive body temperature measurement is the most accurate and precise for use in patients (newborn to adult) in the emergency department? Clinical Practice Guideline: non-invasive temperature measurement. Emergency Nurses Association (ENA). 2015.Google Scholar
  44. 44.
    Blatties C. Methods of temperature measurement. In: Blatties C, editor. Physiology and pathophysiology of temperature regulation. Singapore: World Scientific Publishing Co. Pte. Ltd; 1998. p. 273–9.CrossRefGoogle Scholar
  45. 45.
    IUPS TC. Glossary of terms to thermal physiology. Pflugers Archives. 1987;410:567–87.CrossRefGoogle Scholar
  46. 46.
    Rotello L, Crawford L, Terndrup T. Comparison of infrared ear thermometer derived and equilibrated rectal temperatures in estimating pulmonary artery temperatures. Crit Care Med. 1996;24(9):1501–6.CrossRefGoogle Scholar
  47. 47.
    Sund-Levander M, Grodzinsky E. Assessment of body temperature measurement options. Br J Nurs. 2013;22(14):16–23.Google Scholar
  48. 48.
    Zehner WJ, Terndrup TE. The impact of moderate ambient temperature variance on the relationship between oral, rectal, and tympanic membrane temperatures. Clin Pediatr. 1991;4:61–4.CrossRefGoogle Scholar
  49. 49.
    Benzinger M. Tympanic thermometry in anaesthesia and surgery. J Am Med Assoc. 1969;209:1207–11.CrossRefGoogle Scholar
  50. 50.
    Rumana CS, Gopinath SP, Uzura M, Valadka AB, Robertson CS. Brain temperature exceeds systemic temperature in head-injured patients. Crit Care Med. 1998;26(3):562–7.CrossRefGoogle Scholar
  51. 51.
    Togawa T. Body temperature measurement. Clinical Physiological Measurement. 1985;6(2):83–102.CrossRefGoogle Scholar
  52. 52.
    Milewski A, Ferguson KL, Terndrup TE. Comparison of pulmonary artery, rectal and tympanic membrane temperatures in adult intensive care unit patients. Clin Pediatr. 1991;4(Suppl):13–6.CrossRefGoogle Scholar
  53. 53.
    Petersen M, Hauge H. Can training improve the results with infrared tympanic thermometers? Acta Anaesthesiol Scand. 1997;41:1066–70.CrossRefGoogle Scholar
  54. 54.
    Fallis W. Oral measurement of temperature in orally intubated critical care patients: state-of-the-science review. Am J Crit Care. 2000;9(5):334–43.Google Scholar
  55. 55.
    Erickson R. Oral temperature differences in relation to thermometer and technique. Nurs Res. 1980;29:157–64.CrossRefGoogle Scholar
  56. 56.
    Modell J, Katholi C, Kumaramangalam S, Hudson E, Graham D. Unreliability of the infrared tympanic thermometer in clinical practice: a comparative study with oral mercury and oral electronic thermometers. South Med J. 1998;91(7):649–54.CrossRefGoogle Scholar
  57. 57.
    Rabinowitz RP, Cookson SY, Wasserman SS, et al. Effects of anatomic site, oral stimulation, and body position on estimates of body temperature. Arch Intern Med. 1996;156:777–80.CrossRefGoogle Scholar
  58. 58.
    Cranston WI, Gerbrandy J, Snell ES. Oral, rectal and oesophageal temperatures and some factors affecting them in man. J Physiol. 1954;126:347–58.CrossRefGoogle Scholar
  59. 59.
    Gerbrandy J, Snell ES, Cranston WI. Oral, rectal and oesophageal temperatures in relation to central temperature control in man. Clin Sci. 1954;13:615–24.Google Scholar
  60. 60.
    Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10.CrossRefGoogle Scholar
  61. 61.
    Robinson J, Charlton J, Seal R, Spady D, Joffres M. Oesophageal, rectal, axillary, tympanic and pulmonary artery temperatures during cardiac surgery. Can J Anaesth. 1998;45(4):317–23.CrossRefGoogle Scholar
  62. 62.
    Lee H, Inui D, Suh G, Kim J, Kwon J, Park J, et al. Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis: multi-centered prospective observational study. Crit Care. 2012;16(R33):1–13.Google Scholar
  63. 63.
    Thompson H, Kagan S. Clinical management of fever by nurses: doing what works. J Adv Nurs. 2010;67(2):359–70.CrossRefGoogle Scholar
  64. 64.
    Lefrant J-Y, Muller L, Emmanuel de La Coussaye J, Benbabaali M, Lebris C, Zeitoun N, et al. Temperature measurement in intensive care patients: comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intensive Care Med. 2003;29:414–8.CrossRefGoogle Scholar
  65. 65.
    Jakobsson J, Nilsson A, Carlsson L. Core temperature measured in the auricular canal: comparison between four different tympanic thermometers. Acta Anaesthesiol Scand. 1992;36:819–24.CrossRefGoogle Scholar
  66. 66.
    Matsukawa T, Ozaki M, Hanagata K, Iwashita H, Miyaji T, Kumazawa T. A comparison of four infrared tympanic thermometers with tympanic membrane temperatures measured by thermocouples. Can J Anaesth. 1996;43(12):124–8.CrossRefGoogle Scholar
  67. 67.
    Shibasaki M, Kondo N, Tominaga H, Aoki K, Hasegawa E, Idota Y, et al. Continuous measurement of tympanic temperature with a new infrared method using an optical fiber. J Appl Physiol. 1998;85(3):921–6.CrossRefGoogle Scholar
  68. 68.
    Twerenbold R, Zehnder A, Breidthardt T, Reichlin T, Reiter M, Schaub N, et al. Limitations of infrared ear temperature measurement in clinical practice. Swiss Med Wkly [Internet]. 2010;20.
  69. 69.
    Chamberlain JM, Grandmer J, Rubinoff JL, Klein BL, Waisman Y, Huey M. Comparison of a tympanic thermometer to rectal thermometer and oral thermometers in a pediatric emergency department. Clin Pediatr. 1991;4(Suppl):124–9.Google Scholar
  70. 70.
    Doezema D, Lunt M, Tandberg D. Cerumen occlusion lowers infrared tympanic membrane temperature measurement. Acad Emerg Med. 1993;2(1):17–9.CrossRefGoogle Scholar
  71. 71.
    Robb P, Shahab R. Infrared transtympanic temperature measurement and otitis media with effusion. International Journal of Otorhinolaryngology. 2001;59:195–200.CrossRefGoogle Scholar
  72. 72.
    Duberg T, Lundholm C, Holmberg H. Örontermometer inte fullgott alternativ till rektaltermometer (Ear thermometer not satisfactory alternative to rektaltermometer). Läkartidningen In Swedish. 2007;104:1479–82.Google Scholar
  73. 73.
    Lee V, McKenzie N, Cathcart M. Ear and oral temperatures under usual practice conditions. Res Nurs Pract. 1999;1(1):8.Google Scholar
  74. 74.
    Stavem K, Saxholm H, Smith-Erichsen N. Accuracy of infrared ear thermometry in adult patients. Intensive Care Med. 1997;23:100–5.CrossRefGoogle Scholar
  75. 75.
    Childs C, Harrison R, Hodkinson C. Tympanic membrane temperature as a measure of core temperature. Arch Dis Child. 1999;80:262–6.CrossRefGoogle Scholar
  76. 76.
    Bridges E, Thomas K. Noninvasive measurement of body temperature in critically ill patients. Crit Care Nurse. 2009;29:94–7.CrossRefGoogle Scholar
  77. 77.
    Edling L, Carlsson R, Magnusson A, Holmberg H. Temperaturmätning i panna eller axill inte tillförlitlig: Metoder och termometrar jämförda med rektalmätning som referens (temperature measurement in forehead or axilla not reliable: methods and thermometers compared with rectal temperature as reference). Läkartidningen In Swedish. 2888;46-90(107):2010.Google Scholar
  78. 78.
    Liu C, Chang R, Chang W. Limitations of forehead infrared body temperature detection for fever screening for severe acute respiratory syndrome. Infect Control Hosp Epidemiol. 2004;25(12):1109–11.CrossRefGoogle Scholar
  79. 79.
    Suleman M, Doufas A, Akca O, Ducharme M, Sessler DI. Insufficiency in a new temporal-artery thermometer for adult and pediatric patients. Anesth Analg. 2002;95(1):67–71.CrossRefGoogle Scholar
  80. 80.
    Pompei M. Temperature assessment via the temporal artery; validation of a new method. Arterial heat balance thermometry at an exposed skin site: accuracy, comfort and convenience for patient and clinician. 1999.Google Scholar
  81. 81.
    Crawford D, Hicks B, Thompdon M. Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment. J Med Eng Technol. 2006;30(4):199–211.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • Ewa Grodzinsky
    • 1
  • Märta Sund Levander
    • 2
  1. 1.Department of Pharmaceutic ResearchLinköping UniversityLinköpingSweden
  2. 2.Department of NursingLinköping UniversityLinköpingSweden

Personalised recommendations