Advertisement

Horizontal Gene Transfer Between Wolbachia and Animals

  • Trinidad de MiguelEmail author
  • Oude Zhu
  • Tomás G. Villa
Chapter

Abstract

The present chapter is focused on the occurrence of horizontal gene transfer events from the endocellular bacteria Wolbachia to invertebrates and the implications of this phenomenon in the hosts’ reproductive behaviour, speciation, and acquisition of new abilities.

Keywords

Wolbachia Horizontal gene transfer HGT 

References

  1. Amuzu HE, Tsyganov K, Koh C, Herbert RI, Powell DR, McGraw EA (2018) Wolbachia enhances insect-specific flavivirus infection in Aedes aegypti mosquitoes. Ecol Evol 8:5441–5454CrossRefGoogle Scholar
  2. Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudeau ME, Nesbo CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origin of prokaryotic groups. Annu Rev Genet 37:283–328CrossRefGoogle Scholar
  3. Bushman F (2002) Lateral DNA transfer: mechanisms and consequences. Cold Spring Harbor Lab. Press, PlainviewGoogle Scholar
  4. Carvalho FD, Moreira LA (2017) Why is Aedes aegypti Linnaeus so successful as a species? Neotrop Entomol 46:243–255CrossRefGoogle Scholar
  5. Chou S, Daugherty MD, Peterson SB, Biboy J, Yang Y, Jutras BL, Fritz-Laylin LK, Ferrin MA, Harding BN, Jacobs-Wagner C, Yang XF, Vollmer W, Malik HS, Mougous JD (2015) Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature 518:98–101CrossRefGoogle Scholar
  6. Cordaux R, Gilbert C (2017) Evolutionary significance of Wolbachia-to-animal horizontal gene transfer: female sex determination and the f element in the isopod Armadillium vulgare. Genes 8:186CrossRefGoogle Scholar
  7. Danchin GJE (2016) Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? BMC Biol 14:101CrossRefGoogle Scholar
  8. Danchin GJE, Rosso MN, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B, Abad P (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci 107:17651–17656CrossRefGoogle Scholar
  9. De Konig AP, Brinkman FSL, Jones SJM, Keeling PJ (2000) Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. Mol Biol Evol 17:1769–1773CrossRefGoogle Scholar
  10. Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M (2006) Phylogenetic relationship of the Wolbachia of nematodes and arthropods. PLoS Pathog 2:e94CrossRefGoogle Scholar
  11. Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acethyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba hystolitica. Mol Microbiol 38:446–455CrossRefGoogle Scholar
  12. Gotoh T, Noda H, Fujita T, Iwadate K, Higo Y, Saito S, Ohtsuka S (2005) Wolbachia and nuclear-nuclear interactions contribute to reproductive incompatibility in the spider mite Panonychus mori (Acari: tetranychidae). Heredity 94:237–246CrossRefGoogle Scholar
  13. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481CrossRefGoogle Scholar
  14. Hedges LM, Brownlie JC, SL O’N, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322(80):702CrossRefGoogle Scholar
  15. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O’Neill SL (2014) Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8:e3115CrossRefGoogle Scholar
  16. Hotopp JCD, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Torres MCM, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756CrossRefGoogle Scholar
  17. Hou Q, He J, Yu J, Ye Y, Zhou D, Sun Y, Zhang D, Ma l SB, Zhu C (2014) A case of horizontal gene transfer from Wolbachia to Aedes albopictus C6/36 cell line. Mob Genet Elements 4:e28914CrossRefGoogle Scholar
  18. Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc B 272:1525–1534CrossRefGoogle Scholar
  19. Hurst GDD, Johnson AP, Schulenburg JH, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with threshold bacterial density. Genetics 156:699–709PubMedPubMedCentralGoogle Scholar
  20. Ioannidis P, Lu Y, Kumar N, Creasy T, Daugherty S, Chibucos MC, Orvis J, Shetty A, Ott S, Flowers M, Sengamalay N, Tallon LJ, Pick L, Hotopp JCD (2014) Rapid transcriptome sequencing of an invasive pest, the brown marmorated stink bug Halyomorpha halys. BMC Genomics 15:738CrossRefGoogle Scholar
  21. Keen NT, Roberts PA (1998) Plant parasitic nematodes: digesting a page from the microbe book. Proc Natl Acad Sci U S A 95:4789–4790CrossRefGoogle Scholar
  22. Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP (2009) Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BCM Genomics 10:33CrossRefGoogle Scholar
  23. Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci U S A 99:14280–14285CrossRefGoogle Scholar
  24. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  25. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165CrossRefGoogle Scholar
  26. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144CrossRefGoogle Scholar
  27. Metcalf JA, Funkhouser-Jones LJ, Brileya K, Reysenbach AL, Bordenstein SR (2014) Antibacterial gene transfer across the tree of life. elife:e04266Google Scholar
  28. Mitreva M, Smant G, Helder J (2009) Role of horizontal gene transfer in the evolution of plant parasitism among nematodes. In: Gogarten MB et al (eds) Horizontal gene transfer: genomes in flux. Humana Press, New YorkGoogle Scholar
  29. Nikoh N, Nakabachi A (2009) Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol 7:12CrossRefGoogle Scholar
  30. Robinson KM, Sieber KB, Hotopp JCD (2013) A review of Bacteria-animal lateral gene transfer may inform our understanding of diseases like cancer. PLoS Genet 9(10):e1003877CrossRefGoogle Scholar
  31. Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci 250:91–98CrossRefGoogle Scholar
  32. Sieber KB, Bromley RE, Hotopp JCD (2017) Lateral gene transfer between prokaryotes and eukaryotes. Exp Cell Res 358(2):421–426CrossRefGoogle Scholar
  33. Siozios S, Gerth M, Griffin JS, GDD H (2018) Symbiosis: Wolbachia host shifts in the fast lane. Curr Biol 28:269–271CrossRefGoogle Scholar
  34. Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102CrossRefGoogle Scholar
  35. Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Biol Sci 282:20150249CrossRefGoogle Scholar
  36. Wu B, Novelli J, Jiang D, Dailey H, Landmann F, Ford L, Taylor M, Carlow CKS, Kumar S, Foster JM, Slatko BE (2013) Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes. Proc Natl Acad Sci 110:7748–7753CrossRefGoogle Scholar
  37. Wybouw N, Pauchet Y, Heckel DG, Van Leeuwen T (2016) Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biol Evol 8(6):1785–1801CrossRefGoogle Scholar
  38. Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Trinidad de Miguel
    • 1
    Email author
  • Oude Zhu
    • 1
  • Tomás G. Villa
    • 2
  1. 1.Faculty of Pharmacy, Department of Microbiology and Parasitology, Biotechnology UnitUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Faculty of Pharmacy, Department of MicrobiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations