Advertisement

Horizontal Gene Transfer Between Bacteriophages and Bacteria: Antibiotic Resistances and Toxin Production

  • T. G. VillaEmail author
  • L. Feijoo-Siota
  • JL. R. Rama
  • A. Sánchez-Pérez
  • M. Viñas
Chapter

Abstract

Antibiotic resistance genes (ARGs) are ubiquitous among microorganisms living in a wide variety of environments and can be detected by several molecular techniques. Similarly, toxins and genes encoding toxins are also widespread among organisms. Bacteriophages are bacterial viruses found wherever bacteria exist, and their concentration is particularly high in aquatic environments. The age of the “omics” truly revolutionized this field, establishing the phylogenetic affiliation and function of phages, as well as the role they play in microbial communities and horizontal transfer of bacterial genes. Genomics, transcriptomics, proteomics, and metabolomics have highlighted the role of phages and their interaction with bacterial populations. It is now generally accepted that horizontal gene transfer regularly occurs between bacteriophages and their hosts, either by generalized or specialized transductions or possibly by controlling certain bacterial populations of donors or recipients. This means that phages not only play a major role driving bacterial evolution but also influence their own evolution. Phage infection can result in the bacterial host quickly acquiring (or loosing) novel genes and thus biochemical properties, a process otherwise extremely slow that usually requires long periods of time. This chapter will focus on the role of bacteriophages in the transfer of both antibiotic resistance genes and genes encoding novel toxins to new bacterial species. This knowledge is essential not only to understand the current challenges experienced in medicine but also to prevent, or at least lessen, future clinically relevant threats resulting from gene transfer between microorganisms.

Keywords

Horizontal gene transfer Antibiotic resistance Bacteriophages Phage infection Toxins Toxigenic bacteria 

References

  1. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 46:837–837CrossRefGoogle Scholar
  2. Ackermann HW (2009) Phage classification and characterization. Methods Mol Biol 501:127–140PubMedCrossRefGoogle Scholar
  3. Adams MJ, Carstens EB (2012) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 157:1411–1422PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aertsen A, Faster D, Michiels CW (2005) Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure. Appl Environ Microbiol 71:1155–1162PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alexander HE, Leidy G (1947) Mode of action of streptomycin on type b Haemophilus influenzae: I. Origin of resistant organisms. J Exp Med 85:329–338PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anand N, Davis BD, Armitage AK (1960) Uptake of streptomycin by Escherichia coli. Nature 185:23–24PubMedCrossRefPubMedCentralGoogle Scholar
  7. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ashkenazi A (2010) Botulinum toxin type A for chronic migraine. Curr Neurol Neurosci Rep 10:140–146PubMedCrossRefPubMedCentralGoogle Scholar
  9. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation in pneumococcal types. J Exp Med 79:137–159PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bacciu D, Falchi G, Spazziani A, Bossi L, Marogna G, Leori GS, Rubino S, Uzzau S (2004) Transposition of the heat-stable toxin astA gene into a Gifsy-2-related prophage of Salmonella enterica serovar Abortusovis. J Bacteriol 186:4568–4574PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balcazar JL (2014) Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog 10(7):e1004219PubMedPubMedCentralCrossRefGoogle Scholar
  12. Banks DJ, Beres SB, Musser JM (2002) The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 10:515–521PubMedCrossRefGoogle Scholar
  13. Bar D (2011) Evidence of massive horizontal gene transfer between humans and Plasmodium vivax. Nat Preced.  https://doi.org/10.1038/npre.2011.5690.1
  14. Barash JR, Arnon SS (2014) A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209:183–191PubMedCrossRefGoogle Scholar
  15. Barber M, Burston J (1955) Antibiotic-resistant staphylococcal infection; a study of antibiotic sensitivity in relation to bacteriophage types. Lancet 269:578–583PubMedCrossRefGoogle Scholar
  16. Barbian KD, Minnick MF (2000) A bacteriophage-like particle from Bartonella bacilliformis. Microbiology 146:599–609PubMedCrossRefGoogle Scholar
  17. Basak K, Majumdar SK (1973) Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus for kanamycin production. Antimicrob Agents Chemother 4:6–10PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bell CE, Eisenberg D (1997) Crystal structure of nucleotide-free diphtheria toxin. Biochemistry 36:481–488PubMedCrossRefGoogle Scholar
  19. Beres SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, Liu MY, Smoot JC, Porcella SF, Parkins LD, Campbell DS, Smith TM, McCormick JK, Leung DY, Schlievert PM, Musser JM (2002) Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci USA 99:10078–10083PubMedCrossRefGoogle Scholar
  20. Betley MJ, Mekalanos JJ (1985) Staphylococcal enterotoxin A is encoded by phage. Science 229:185–187PubMedCrossRefGoogle Scholar
  21. Beumer A, Robinson JB (2005) A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl Environ Microbiol 71:8301–8304PubMedPubMedCentralCrossRefGoogle Scholar
  22. Beutin L, Strauch E, Fischer I (1999) Isolation of Shigella sonnei lysogenic for a bacteriophage encoding gene for production of Shiga toxin. Lancet 353:1498PubMedCrossRefGoogle Scholar
  23. Bielaszewska M, Prager R, Köck R, Mellmann A, Zhang W, Tschäpe H, Tarr PI, Karch H (2007) Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl Environ Microbiol 73:3144–3150PubMedPubMedCentralCrossRefGoogle Scholar
  24. Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, Bouet JY, Cruveiller S, Médigue C, Blanco J, Clermont O, Denamur E, Branger C (2014) Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother 58:6550–6557PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bingel KF (1949) Neue Untersuchungen zur Scharlachatiologie. Deutsch. Med Wosh 127:703–706Google Scholar
  26. Blahová J, Hupková M, Krcméry V Sr (1994) Phage F-116 transduction of antibiotic resistance from a clinical isolate of Pseudomonas aeruginosa. J Chemother 6:184–188PubMedCrossRefGoogle Scholar
  27. Blahová J, Králiková K, Krcméry V Sr, Mlynarcík D, Trupl J (1997) Transduction of antibiotic resistance including imipenem resistance by wild type phages from nosocomial strains of Pseudomonas aeruginosa. Acta Virol 41:293–296PubMedGoogle Scholar
  28. Blair JE, Carr M (1961) Lysogeny in staphylococci. J Bacteriol 82:984–993PubMedPubMedCentralGoogle Scholar
  29. Blakely GW (2004) Smarter than the average phage. Mol Microbiol 54:851–854PubMedCrossRefGoogle Scholar
  30. Boakes E, Kearns AM, Ganner M, Perry C, Hill RL, Ellington MJ (2011) Distinct bacteriophages encoding Panton-Valentine leukocidin (PVL) among international methicillin-resistant Staphylococcus aureus clones harboring PVL. J Clin Microbiol 49:684–692PubMedPubMedCentralCrossRefGoogle Scholar
  31. Botka T, Růžičková V, Konečná H, Pantůček R, Rychlík I, Zdráhal Z, Petráš P, Doškař J (2015) Complete genome analysis of two new bacteriophages isolated from impetigo strains of Staphylococcus aureus. Virus Genes 51:122–131PubMedCrossRefGoogle Scholar
  32. Boyd EF (2010) Efficiency and specificity of CTXϕ chromosomal integration: dif makes all the difference. Proc of the Natl Acad Sci USA 107:3951–3952CrossRefGoogle Scholar
  33. Boyd EF, Moyer KE, Shi L, Waldor MK (2000) Infectious CTXϕ and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 68:1507–1513PubMedPubMedCentralCrossRefGoogle Scholar
  34. Boyd EF, Davis BM, Hochhut B (2001) Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria. Trends Microbiol 9:137–144PubMedCrossRefGoogle Scholar
  35. Bräu B, Piepersberg W (1983) Cointegrational transduction and mobilization of gentamicin resistance plasmid pWP14a is mediated by IS140. Mol Gen Genet 189:298–303PubMedCrossRefGoogle Scholar
  36. Broutet N, Marais A, Lamouliatte H, de Mascarel A, Samoyeau R, Salamon R, Mégraud F (2001) cagA status and eradication treatment outcome of anti-Helicobacter pylori triple therapies in patients with nonulcer dyspepsia. J Clin Microbiol 39:1319–1322PubMedPubMedCentralCrossRefGoogle Scholar
  37. Brown-Jaque M, Calero-Cáceres W, Muniesa M (2015) Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 79:1–7PubMedCrossRefGoogle Scholar
  38. Brüggemann H, Gottschalk G (2004) Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10:53–68PubMedCrossRefGoogle Scholar
  39. Brüggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321PubMedCrossRefGoogle Scholar
  40. Burgen AS, Dickens F, Zatman LJ (1949) The action of botulinum toxin on the neuro-muscular junction. J Physiol 109:10–24PubMedPubMedCentralCrossRefGoogle Scholar
  41. Burns D (1988) Subunit structure and enzymic activity of pertussis toxin. Microbiol Sci 5:285–287PubMedGoogle Scholar
  42. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976PubMedCrossRefGoogle Scholar
  43. Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233PubMedPubMedCentralCrossRefGoogle Scholar
  44. Bushara KO, Park DM (1994) Botulinum toxin and sweating. J Neurol Neurosurg Psychiatry 57:1437–1438PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cairns J, Becks L, Jalasvuori M, Hiltunen T (2017) Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. Philos Trans R Soc Lond B Biol Sci 372. pii: 20160040CrossRefGoogle Scholar
  46. Campos J, Martínez E, Izquierdo Y, Fando R (2010) VEJϕ, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology 156:108–115PubMedCrossRefGoogle Scholar
  47. Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276PubMedPubMedCentralCrossRefGoogle Scholar
  48. Casas V, Magbanua J, Sobrepeña G, Kelley ST, Maloy SR (2010) Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol 2010:754368.  https://doi.org/10.1155/2010/754368 CrossRefPubMedGoogle Scholar
  49. Chakrabarti SL, Gorini L (1975) Growth of bacteriophages MS2 and T7 on streptomycin-resistant mutants of Escherichia coli. J Bacteriol 121:670–674PubMedPubMedCentralGoogle Scholar
  50. Chakrabarty AM, Gunsalus IC (1970) Transduction and genetic homology between Pseudomonas species putida and aeruginosa. J Bacteriol 103:830–832PubMedPubMedCentralGoogle Scholar
  51. Chan CX, Beiko RG, Ragan MA (2011) Lateral transfer of genes and gene fragments in Staphylococcus extends beyond mobile elements. J Bacteriol 193:3964–3977PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chart H, Row B, Threlfall EJ, Ward LR (1989) Conversion of Salmonella enteritidis phage type 4 to phage type 7 involves loss of lipopolysaccharide with concomitant loss of virulence. FEMS Microbiol Lett 51:37–40PubMedCrossRefGoogle Scholar
  53. Chen J, Novick RP (2009) Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141PubMedCrossRefGoogle Scholar
  54. Coetzee JN (1974) High frequency transduction of kanamycin resistance in Proteus mirabilis. J Gen Microbiol 84:285–296PubMedCrossRefGoogle Scholar
  55. Coetzee JN (1975) Specialized transduction of kanamycin resistance in a Providence strain. J Gen Microbiol 88:307–316PubMedCrossRefGoogle Scholar
  56. Coetzee JN (1976) Derivation and properties of Proteus mirabilis systems for high frequency transduction of streptomycin-sulphonamide and streptomycin-sulphonamide-kanamycin resistances. J Gen Microbiol 96:95–107PubMedCrossRefGoogle Scholar
  57. Coetzee JN, Datta N, Hedges RW, Appelbaum PC (1973) Transduction of R factors in Proteus mirabilis and P. rettgeri. J Gen Microbiol 76:355–368PubMedCrossRefGoogle Scholar
  58. Cohen S, Sweeney HM (1973) Effect of the prophage and penicillinase plasmid of the recipient strain upon the transduction and the stability of methicillin resistance in Staphylococcus aureus. J Bacteriol 116:803–811PubMedPubMedCentralGoogle Scholar
  59. Coleman DC, Sullivan DJ, Russell RJ, Arbuthnott JP, Carey BF, Pomeroy HM (1989) Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J Gen Microbiol 135:1679–1697PubMedGoogle Scholar
  60. Cook WL, Wachsmuth K, Johnson SR, Birkness KA, Samadi AR (1984) Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1. Infect Immun 45:222–226PubMedPubMedCentralGoogle Scholar
  61. Cossart P (1988) The listeriolysin O gene: a chromosomal locus crucial for the virulence of Listeria monocytogenes. Infection 16:S157–S159PubMedCrossRefGoogle Scholar
  62. Cox EC, Whitet JR, Flakst JG (1964) Streptomycin action and the ribosome. Proc Natl Acad Sci 51:703–709PubMedCrossRefGoogle Scholar
  63. Craigie J, Yen CH (1938) The demonstration of types of B. typhosus by means of preparations of type 11 phage. Canad Publ Health J 29:448–484Google Scholar
  64. Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239–241PubMedCrossRefGoogle Scholar
  65. Datta N, Hedges RW, Shaw EJ, Sykes R, Richmond MH (1971) Properties of an R factor from Pseudomonas aeroginosa. J Bacteriol 108:1244–1249PubMedPubMedCentralGoogle Scholar
  66. Davies J, Brzezinska M, Benviste R (1971) The problems of drug-resistant pathogenic bacteria. R factors: biochemical mechanisms of resistance to aminoglycoside antibiotics. Ann NY Acad Sci 182:226–233PubMedCrossRefGoogle Scholar
  67. Davis BM, Lawson EH, Sandkvist M, Ali A, Sozhamannan S, Waldor MK (2000) Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXϕ. Science 288:333–335PubMedCrossRefGoogle Scholar
  68. de Bernard M, Arico B, Papini E, Rizzuto R, Grandi G, Rappuoli R, Montecucco C (1997) Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol Microbiol 26:665–674PubMedCrossRefGoogle Scholar
  69. de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133PubMedCrossRefGoogle Scholar
  70. Dearborn AD, Dokland T (2012) Mobilization of pathogenicity islands by Staphylococcus aureus strain Newman bacteriophages. Bacteriophage 2:70–78PubMedPubMedCentralCrossRefGoogle Scholar
  71. Demerec M (1945) Production of Staphylococcus strains resistant to various concentrations of penicillin. Proc Natl Acad Sci USA 31:16–24PubMedCrossRefGoogle Scholar
  72. Dempsey RM, Carroll D, Kong H, Higgins L, Keane CT, Coleman DC (2005) Sau42I, a BcgI-like restriction-modification system encoded by the Staphylococcus aureus quadruple-converting phage Phi42. Microbiology 151:1301–1311PubMedCrossRefGoogle Scholar
  73. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34PubMedPubMedCentralCrossRefGoogle Scholar
  74. Döpfer D, Sekse C, Beutin L, Solheim H, van der Wal FJ, de Boer A, Slettemeås JS, Wasteson Y, Urdahl AM (2010) Pathogenic potential and horizontal gene transfer in ovine gastrointestinal Escherichia coli. J Appl Microbiol 108:1552–1562PubMedCrossRefGoogle Scholar
  75. Dover N, Barash JR, Hill KK, Xie G, Arnon SS (2014) Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 209:192–202PubMedCrossRefGoogle Scholar
  76. Downard JS (1988) Tn5-mediated transposition of plasmid DNA after transduction to Myxococcus xanthus. J Bacteriol 170:4939–4941PubMedPubMedCentralCrossRefGoogle Scholar
  77. Drabble WT, Stocker BA (1968) R (transmissible drug-resistance) factors in Salmonella typhimurium: pattern of transduction by phage P22 and ultraviolet-protection effect. J Gen Microbiol 53:109–123PubMedCrossRefGoogle Scholar
  78. Dumke R, Schröter-Bobsin U, Jacobs E, Röske I (2006) Detection of phages carrying the Shiga toxin 1 and 2 genes in waste water and river water samples. Lett Appl Microbiol 42:48–53PubMedCrossRefGoogle Scholar
  79. Eagle H (1954) The multiple mechanisms of penicillin resistance. J Bacteriol 68:610–616PubMedPubMedCentralGoogle Scholar
  80. Eberth CJ (1880) Die Organismen in den Organen bei Typhus abdominalis. Virchows Archiv Path Anat 81:58–73CrossRefGoogle Scholar
  81. Eggers CH, Gray CM, Preisig AM, Glenn DM, Pereira J, Ayers RW, Alshahrani M, Acabbo C, Becker MR, Bruenn KN, Cheung T, Jendras TM, Shepley AB, Moeller JT (2016) Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by ϕBB-1, a bacteriophage of Borrelia burgdorferi. Pathog Dis 74. pii: ftw107Google Scholar
  82. Ehara M, Shimodori S, Kojima F, Ichinose Y, Hirayama T, Albert MJ, Supawat K, Honma Y, Iwanaga M, Amako K (1997) Characterization of filamentous phages of Vibrio cholerae O139 and O1. FEMS Microbiol Lett 154:293–301PubMedCrossRefPubMedCentralGoogle Scholar
  83. Eklund MW, Poysky FT (1974) Interconversion of type C and D strains of Clostridium botulinum by specific bacteriophages. Appl Microbiol 27:251–258PubMedPubMedCentralGoogle Scholar
  84. Eklund MW, Poysky FT, Boatman ES (1969) Bacteriophages of Clostridium botulinum types A, B, E, and F and nontoxigenic strains resembling type E. J Virol 3:270–274PubMedPubMedCentralGoogle Scholar
  85. Eklund MW, Poysky FT, Reed SM, Smith CA (1971) Bacteriophages and the toxigenicity of Clostridium botulinum type C. Science 172:480–482PubMedCrossRefPubMedCentralGoogle Scholar
  86. Eklund MW, Poysky FT, Reed SM (1972) Bacteriophage and the toxigenicity of Clostridium botulinum type D. Nat New Biol 235:16–17PubMedCrossRefPubMedCentralGoogle Scholar
  87. Eklund MW, Poysky FT, Peterson ME, Meyers JA (1976) Relationship of bacteriophages to alpha toxin production in Clostridium novyi types A and B. Infect Immun 14:793–803PubMedPubMedCentralGoogle Scholar
  88. Eklund MW, Poysky FT, Mseitif LM, Strom MS (1988) Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Appl Environ Microbiol 54:1405–1408PubMedPubMedCentralGoogle Scholar
  89. Eltringham IJ, Wilson SM, Drobniewski FA (1999) Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis. J Clin Microbiol 37:3528–3532PubMedPubMedCentralGoogle Scholar
  90. Emmart EW (1945) The tuberculostatic action of streptothricin and streptomycin with special reference to the action of streptomycin on the chorioallantoic membrane of the chick embryo. Public Health Rep 60:1415–1421PubMedCrossRefPubMedCentralGoogle Scholar
  91. Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA (2017) Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J 11:237–247PubMedCrossRefPubMedCentralGoogle Scholar
  92. Erbguth FJ, Naumann M (1999) Historical aspects of botulinum toxin: Justinus Kerner (1786–1862) and the “sausage poison”. Neurology 53:1850–1853PubMedCrossRefPubMedCentralGoogle Scholar
  93. Erdos T, Ullmann A (1959) Effect of streptomycin on the incorporation of amino-acids labelled with carbon-14 into ribonucleic acid and protein in a cell-free system of a Mycobacterium. Nature 183:618–619PubMedCrossRefPubMedCentralGoogle Scholar
  94. Euler CW, Juncosa B, Ryan PA, Deutsch DR, McShan WM, Fischetti VA (2016) Targeted curing of all lysogenic bacteriophage from Streptococcus pyogenes using a novel counter-selection technique. PLoS One 11:e0146408PubMedPubMedCentralCrossRefGoogle Scholar
  95. Faruque SM, Rahman MM, Asadulghani, Nasirul Islam KM, Mekalanos JJ (1999) Lysogenic conversion of environmental Vibrio mimicus strains by CTXϕ. Infect Immun 67:5723–5729PubMedPubMedCentralGoogle Scholar
  96. Fleming RS, Queen FB (1946) Penicillin resistance; of bacteria; strain variations in penicillin sensitivity among bacterial species encountered in war wounds and infections. Am J Clin Pathol 16:63–65PubMedCrossRefPubMedCentralGoogle Scholar
  97. Foley GE (1947) In Vitro resistance of the genus Bacteroides to streptomycin. Science 106:423–424PubMedCrossRefGoogle Scholar
  98. Fox JG, Soave OA (1971) Pneumococcic meningoencephalitis in a rhesus monkey. J Am Vet Med Assoc 159:1595–1597PubMedGoogle Scholar
  99. Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688PubMedPubMedCentralGoogle Scholar
  100. Friedman D, Court D (2001) Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 4:201–207PubMedCrossRefGoogle Scholar
  101. Frobisher M Jr, Brown JH (1927) Transmissible toxicogenicity of streptococci. Bull Johns Hopkins Hosp 41:167–173Google Scholar
  102. Fujii N, Oguma K, Yokosawa N, Kimura K, Tsuzuki K (1988) Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D. Appl Environ Microbiol 54:69–73PubMedPubMedCentralGoogle Scholar
  103. Fuller NA, Staub AM (1968) Immunochemical studies on Salmonella. 13. Chemical changes appearing on the specific polysaccharide of S. cholerae suis after its conversion by phage 14. Eur J Biochem 4:286–300PubMedCrossRefGoogle Scholar
  104. Gale EF, Rodwell AW (1949) The assimilation of amino-acids by bacteria; the nature of resistance to penicillin in Staphylococcus aureus. J Gen Microbiol 3:127–142PubMedCrossRefGoogle Scholar
  105. García-Aljaro C, Muniesa M, Jofre J, Blanch AR (2006) Newly identified bacteriophages carrying the stx2g Shiga toxin gene isolated from Escherichia coli strains in polluted waters. FEMS Microbiol Lett 258:127–135PubMedCrossRefGoogle Scholar
  106. Gasmi L, Boulain H, Gauthier J, Hua-Van A, Musset K, Jakubowska AK, Aury JM, Volkoff AN, Huguet E (2015) Recurrent domestication by lepidoptera of genes from their parasites mediated by bracoviruses. PLoS Genet 11:e1005470PubMedPubMedCentralCrossRefGoogle Scholar
  107. Geer LY, Domrachev M, Lipman DJ, Bryant SH (2002) CDART: protein homology by domain architecture. Genome Res 12:1619–1623PubMedPubMedCentralCrossRefGoogle Scholar
  108. George M, Pandalai KM (1949) Sensitization of penicillin-resistant pathogens. Lancet 1:955–957PubMedCrossRefGoogle Scholar
  109. Gerdes JC, Romig WR (1975) Genetic basis of toxin production and pathogenesis in Vibrio cholerae: evidence against phage conversion. Infect Immun 11:445–452PubMedPubMedCentralGoogle Scholar
  110. Giakkoupi P, Tzelepi E, Legakis NJ, Tzouvelekis LS (1999) Aspartic acid for asparagine substitution at position 276 reduces susceptibility to mechanism-based inhibitors in SHV-1 and SHV-5 beta-lactamases. J Antimicrob Chemother 43:23–29PubMedCrossRefGoogle Scholar
  111. Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot (Tokyo) 67:625–630CrossRefGoogle Scholar
  112. Gorini L, Kataja E (1964) Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc Natl Acad Sci USA 51:487–493PubMedCrossRefGoogle Scholar
  113. Goshorn SC, Schlievert PM (1989) Bacteriophage association of streptococcal pyrogenic exotoxin type C. J Bacteriol 171:3068–3073PubMedPubMedCentralCrossRefGoogle Scholar
  114. Gratia JP (2007) Spontaneous zygogenesis (Z-mating) in mecillinam-rounded bacteria. Arch Microbiol 188:565–574PubMedCrossRefGoogle Scholar
  115. Gratia JP (2017) Analysis of evolving lysogenized products of spontaneous zygogenesis in Escherichia coli. FEMS Microbiol Lett 364.  https://doi.org/10.1093/femsle/fnw290
  116. Gray GS, Fitch WM (1983) Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from Staphylococcus aureus. Mol Biol Evol 1:57–66PubMedGoogle Scholar
  117. Gray MD, Lampel KA, Strockbine NA, Fernandez RE, Melton-Celsa AR, Maurelli AT (2014) Clinical isolates of Shiga toxin 1a-producing Shigella flexneri with an epidemiological link to recent travel to Hispañiola. Emerg Infect Dis 20:1669–1677.  https://doi.org/10.3201/eid2010.140292 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159CrossRefGoogle Scholar
  119. Griffith LJ, Ostrander WE, Smith ZF, Beswick DE (1961) Appearance of kanamycin resistance in a single phage type of Staphylococcus. J Bacteriol 81:157–159PubMedPubMedCentralGoogle Scholar
  120. Grimley PM, Rosenblum EN, Mims SJ, Moss B (1970) Interruption by Rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J Virol 6:519–533PubMedPubMedCentralGoogle Scholar
  121. Guinane CM, Penadés JR, Fitzgerald JR (2011) The role of horizontal gene transfer in Staphylococcus aureus host adaptation. Virulence 2:241–243PubMedCrossRefGoogle Scholar
  122. Gyles C, Boerlin P (2014) Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol 51:328–340PubMedCrossRefGoogle Scholar
  123. Hall BG, Barlow M (2003) Structure-based phylogenies of the serine beta-lactamases. J Mol Evol 57:255–260PubMedCrossRefGoogle Scholar
  124. Hall BG, Salipante SJ, Barlow M (2004) Independent origins of subgroup Bl + B2 and subgroup B3 metallo-beta-lactamases. J Mol Evol 59:133–141PubMedCrossRefGoogle Scholar
  125. Hammerling MJ, Gollihar J, Mortensen C, Alnahhas RN, Ellington AD, Barrick JE (2016) Expanded genetic codes create new mutational routes to rifampicin resistance in Escherichia coli. Mol Biol Evol 33:2054–2063PubMedCrossRefGoogle Scholar
  126. Harada K, Kameda M, Suzuki M, Mitsuhashi S (1963) Drug resistance of enteric bacteria. II. Transduction of transmissible drug-resistance (r) factors with phage epsilon. J Bacteriol 86:1332–1338PubMedPubMedCentralGoogle Scholar
  127. Hariharan H, Mitchell WR (1976) Observations on bacteriophages of Clostridium botulinum type C isolates from different sources and the role of certain phages in toxigenicity. Appl Environ Microbiol 32:145–158PubMedPubMedCentralGoogle Scholar
  128. Harvey PJH (1940) Listeria: change of name for a genus of bacteria. Nature 145:264Google Scholar
  129. Hasanoor Reja AH, Biswas N, Biswas S, Lavania M, Chaitanya VS, Banerjee S, Maha Patra PS, Gupta UD, Patra PK, Sengupta U, Bhattacharya B (2015) Report of rpoB mutation in clinically suspected cases of drug resistant leprosy: a study from Eastern India. Indian J Dermatol Venereol Leprol 81:155–161PubMedCrossRefGoogle Scholar
  130. Hayashi T, Matsumoto H, Ohnishi M, Yokota S, Shinomiya T, Kageyama M, Terawaki Y (1994) Cytotoxin-converting phages, φCTX and PS21, are R pyocin-related phages. FEMS Microbiol Lett 122:239–244PubMedGoogle Scholar
  131. Hedges RW, Jacob A (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 132:31–40PubMedCrossRefGoogle Scholar
  132. Heffron F, Sublett R, Hedges RW, Jacob A, Falkow S (1975) Origin of the TEM-beta-lactamase gene found on plasmids. J Bacteriol 122:250–256PubMedPubMedCentralGoogle Scholar
  133. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 96:2192–2197PubMedCrossRefGoogle Scholar
  134. Hennekinne JA, De Buyser ML, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev 36:815–886PubMedCrossRefGoogle Scholar
  135. Herold S, Karch H, Schmidt H (2004) Shiga toxin-encoding bacteriophages-genomes in motion. Int J Med Microbiol 294:115–121PubMedCrossRefPubMedCentralGoogle Scholar
  136. Herrell WE, Nichols DR (1945) The clinical use of streptomycin: a study of 45 cases. Proc Staff Meet Mayo Clin 20:449–462PubMedGoogle Scholar
  137. Hodgson DA (2000) Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35:312–323PubMedCrossRefGoogle Scholar
  138. Holloway BW (1960) Grouping Pseudomonas aeruginosa by lysogenicity and pyocinogenicity. J Pathol Bacteriol 80:448–450PubMedCrossRefGoogle Scholar
  139. Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443PubMedPubMedCentralGoogle Scholar
  140. Holloway BW, Monk M (1959) Transduction in Pseudomonas aeruginosa. Nature 184:1426–1427PubMedCrossRefPubMedCentralGoogle Scholar
  141. Holzmayer TA, Karataev GI, Rozinov MN, Moskvina IL, Shumakov YL, Motin VL, Mebel SM, Gershanovich VN, Lapaeva IA (1988) Bacteriophages of Bordetella sp.: features of lysogeny and conversion. Zentralbl Bakteriol Mikrobiol Hyg A 269:147–155PubMedPubMedCentralGoogle Scholar
  142. Horng YT, Jeng WY, Chen YY, Liu CH, Dou HY, Lee JJ, Chang KC, Chien CC, Soo PC (2015) Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin. Antimicrob Agents Chemother 59:1542–1548PubMedPubMedCentralCrossRefGoogle Scholar
  143. Hotchkiss RD (1951) Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from resistant cultures. Cold Spring Harb Symp Quant Biol 16:457–461PubMedCrossRefGoogle Scholar
  144. Hotchkiss RD (1952) Induction of penicillin resistance by transformation. Bull NY Acad Med 28:346–348Google Scholar
  145. Houston CW, Davis CP, Peterson JW (1982) Salmonella toxin synthesis is unrelated to the presence of temperate bacteriophages. Infect Immun 35:749–751PubMedPubMedCentralGoogle Scholar
  146. Huang A, Friesen J, Brunton JL (1987) Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli. J Bacteriol 169:4308–4312PubMedPubMedCentralCrossRefGoogle Scholar
  147. Inoue K, Lida H (1970) Conversion of toxigenicity in Clostridium botulinum type C. Jpn J Microbiol 14:87–89PubMedCrossRefGoogle Scholar
  148. Inoue K, Lida H (1971) Phage-conversion of toxigenicity in Clostridium botulinum types C and D. Jpn J Med Sci Biol 24:53–56PubMedGoogle Scholar
  149. Ismail NA, Ismail MF, Noor SS, Camalxaman SN (2016) Genotypic detection of rpoB and katG gene mutations associated with rifampicin and isoniazid resistance in Mycobacterium tuberculosis isolates. Malays J Med Sci 23:22–26PubMedPubMedCentralGoogle Scholar
  150. Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787PubMedPubMedCentralGoogle Scholar
  151. Johannessen GS, James CE, Allison HE, Smith DL, Saunders JR, McCarthy AJ (2005) Survival of a Shiga toxin-encoding bacteriophage in a compost model. FEMS Microbiol Lett 245:369–375PubMedCrossRefGoogle Scholar
  152. Johnson LP, Schlievert PM (1984) Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol Gen Genet 194:52–56PubMedCrossRefGoogle Scholar
  153. Johnson LP, Schlievert PM, Watson DW (1980) Transfer of group A streptococcal pyrogenic exotoxin production to nontoxigenic strains of lysogenic conversion. Infect Immun 28:254–257PubMedPubMedCentralGoogle Scholar
  154. Jones WD Jr, David HL (1971) Inhibition by rifampin of mycobacteriophage D29 replication in its drug-resistant host, Mycobacterium smergmatis ATCC 607. Am Rev Respir Dis 103:618–624PubMedGoogle Scholar
  155. Jones WD Jr, Beam RE, David HL (1974) Transduction of a streptomycin R-factor from Mycobacterium smegmatis to Mycobacterium tuberculosis H37Rv. Tubercle 55:73–80PubMedCrossRefGoogle Scholar
  156. Jones D, Metzger HJ, Schatz A, Waksman SA (1944) Control of Gram-negative bacteria in experimental animals by streptomycin. Science 100:103–105PubMedCrossRefGoogle Scholar
  157. Jouravleva EA, McDonald GA, Garon CF, Boesman-Finkelstein M, Finkelstein RA (1998) Characterization and possible functions of a new filamentous bacteriophage from Vibrio cholerae O139. Microbiology 144:315–324PubMedCrossRefPubMedCentralGoogle Scholar
  158. Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage φPVL carrying Panton-Valentine leukocidin genes. Gene 215:57–67PubMedCrossRefGoogle Scholar
  159. Kapur V, Kanjilal S, Hamrick MR, Li LL, Whittam TS, Sawyer SA, Musser JM (1995) Molecular population genetic analysis of the streptokinase gene of Streptococcus pyogenes: mosaic alleles generated by recombination. Mol Microbiol 16:509–519PubMedCrossRefPubMedCentralGoogle Scholar
  160. Kasuya M (1964) Transfer of drug resistance between enteric bacteria induced in the mouse intestine. J Bacteriol 88:322–328PubMedPubMedCentralGoogle Scholar
  161. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T (1995) Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 45:406–408PubMedCrossRefPubMedCentralGoogle Scholar
  162. Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351PubMedPubMedCentralCrossRefGoogle Scholar
  163. Keen EC (2012) Paradigms of pathogenesis: targeting the mobile genetic elements of disease. Front Cell Infect Microbiol 2:161PubMedPubMedCentralCrossRefGoogle Scholar
  164. Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS, Klaus JS, Adhya SL (2017) Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation. MBio 8:e02115–e02216PubMedPubMedCentralCrossRefGoogle Scholar
  165. Kendall AI, Walker AW (1910) The isolation of Bacillus dysenteriae from stools. J Med Res 23:481–485PubMedPubMedCentralGoogle Scholar
  166. Khalil RK, Skinner C, Patfield S, He X (2016) Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog Dis 74:ftw037PubMedCrossRefGoogle Scholar
  167. Kimsey HH, Waldor MK (1998a) CTXφ immunity: application in the development of cholera vaccines. Proc Natl Acad Sci USA 95:7035–7039PubMedCrossRefGoogle Scholar
  168. Kimsey HH, Waldor MK (1998b) Vibrio cholerae hemagglutinin/protease inactivates CTXφ. Infect Immun 66:4025–4029PubMedPubMedCentralGoogle Scholar
  169. Kingston W (2004) Streptomycin, Schatz v. Waksman, and the balance of credit for discovery. J Hist Med Allied Sci 59:441–462PubMedCrossRefGoogle Scholar
  170. Kinouchi T, Takumi K, Kawata T (1981) Characterization of two inducible bacteriophages, α1 and α2, isolated from Clostridium botulinum type A 190L and their deoxyribonucleic acids. Microbiol Immunol 25:915–927PubMedCrossRefGoogle Scholar
  171. Kirschbaum JB, Konrad EB (1973) Isolation of a specialized lambda transducing bacteriophage carrying the beta subunit gene for Escherichia coli ribonucleic acid polymerase. J Bacteriol 116:517–526PubMedPubMedCentralGoogle Scholar
  172. Klein M, Kimmelman LJ (1946) Development of streptomycin resistance of the Shigellae. J Bacteriol 51:581PubMedGoogle Scholar
  173. Knight V, Holzer AR (1954) Studies on staphylococci from hospital patients. I. Predominance of strains of group III phage patterns which are resistant to multiple antibiotics. J Clin Invest 33:1190–1198PubMedPubMedCentralCrossRefGoogle Scholar
  174. Knothe H, Lebek G, Krcméry V, Seginková Z, Cervenka J, Antal M, Mitsuhashi S (1981) Transduction of amikacin, gentamicin and tobramycin resistance in Pseudomonas aeruginosa with phage F 116 and AP 19, a new wildtype phage. Zentralbl Bakteriol Mikrobiol Hyg A 250:506–510PubMedGoogle Scholar
  175. Kollenda MC, Kamp D, Hartmann GR (1986) Mu-induced rifamycin-resistant mutations not located in the rpoB gene of Escherichia coli. Mol Gen Genet 204:192–194PubMedCrossRefPubMedCentralGoogle Scholar
  176. Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci USA 99:14280–14285PubMedCrossRefPubMedCentralGoogle Scholar
  177. Konrad B, Kirschbaum J, Austin S (1973) Isolation and characterization of φ80 transducing bacteriophage for a ribonucleic acid polymerase gene. J Bacteriol 116:511–516PubMedPubMedCentralGoogle Scholar
  178. Korczynska JE, Turkenburg JP, Taylor EJ (2012) The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic Acids Res 40:928–938PubMedCrossRefPubMedCentralGoogle Scholar
  179. Krcmery V, Výmola F, Mitsuhashi S (1977) Transduction, by phages F116 and G101, of gentamicin-tobramycin resistance, and of “autoplaque formation” property in Pseudomonas aeruginosa. Zentralbl Bakteriol Orig A 239:361–364PubMedGoogle Scholar
  180. Kropinski AM, Sulakvelidze A, Konczy P, Poppe C (2007) Salmonella phages and prophages—genomics and practical aspects. Methods Mol Biol 394:133–175PubMedCrossRefGoogle Scholar
  181. Krylov V, Shaburova O, Pleteneva E, Bourkaltseva M, Krylov S, Kaplan A, Chesnokova E, Kulakov L, Magill D, Polygach O (2016) Modular approach to select bacteriophages targeting Pseudomonas aeruginosa for their application to children suffering with cystic fibrosis. Front Microbiol 7:1631PubMedPubMedCentralCrossRefGoogle Scholar
  182. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490PubMedPubMedCentralCrossRefGoogle Scholar
  183. Kyrillos A, Arora G, Murray B, Rosenwald AG (2016) The presence of phage orthologous genes in Helicobacter pylori correlates with the presence of the virulence factors CagA and VacA. Helicobacter 21:226–233PubMedCrossRefGoogle Scholar
  184. Lal S, Cheema S, Kalia VC (2008) Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 48:228–242PubMedPubMedCentralCrossRefGoogle Scholar
  185. Lamanna C, McElroy OE, Eklund HW (1946) The purification and crystallization of Clostridium botulinum type A toxin. Science 103:613–614PubMedCrossRefGoogle Scholar
  186. Lang LH (2006) FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131:1370PubMedGoogle Scholar
  187. Lányi B, Lantos J (1976) Antigenic changes in Pseudomonas aeruginosa in vivo and after lysogenization in vitro. Acta Microbiol Acad Sci Hung 23:337–351PubMedGoogle Scholar
  188. Lapaeva IA, Mebel SM, Pereverzev NA, Siniashina LN (1980) Bordetella pertussis bacteriophage. Zh Mikrobiol Epidemiol Immunobiol 5:85–90Google Scholar
  189. Lapaeva IA, Mebel SM, Siniashina LN, Shakhvatova OI (1982) Toxigenicity conversion by pertussis phages in Bordetella parapertussis. Zh Mikrobiol Epidemiol Immunobiol 9:60–64Google Scholar
  190. Lathe R, Lecocq JP (1977) The firA gene, a locus involved in the expression of rifampicin resistance in Escherichia coli. I. Characterisation of lambdafirA transducing phages constructed in vitro. Mol Gen Genet 154:43–51PubMedCrossRefGoogle Scholar
  191. Laurell G, Wallmark G (1953) Studies on Staphylococcus aureus pyogenes in a children’s hospital. III. Results of phage-typing and tests for penicillin resistance of 2474 strains isolated from patients and staff. Acta Pathol Microbiol Scand 32:438–447PubMedCrossRefPubMedCentralGoogle Scholar
  192. Lawson PA, Citron DM, Tyrrell KL, Finegold SM (2016) Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe 40:95–99PubMedCrossRefPubMedCentralGoogle Scholar
  193. Lederberg J (1951) Streptomycin resistance; a genetically recessive mutation. J Bacteriol 61:549–550PubMedPubMedCentralGoogle Scholar
  194. Lekunberri I, Subirats J, Borrego CM, Balcázar JL (2017) Exploring the contribution of bacteriophages to antibiotic resistance. Environ Pollut 220:981–984PubMedCrossRefPubMedCentralGoogle Scholar
  195. Licciardello JJ, Nickerson JT, Ribich CA, Goldblith SA (1967) Thermal inactivation of type E botulinum toxin. Appl Microbiol 15:249–256PubMedPubMedCentralGoogle Scholar
  196. Lindsay JA, Holden MT (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201PubMedCrossRefPubMedCentralGoogle Scholar
  197. Lippi D, Gotuzzo E (2014) The greatest steps towards the discovery of Vibrio cholerae. Clin Microbiol Infect 20:191–195.  https://doi.org/10.1111/1469-0691.12390 CrossRefPubMedGoogle Scholar
  198. Liu PV (1964) Factors that influence toxigenicity of Pseudomonas aeruginosa. J Bacteriol 88:1421–1427PubMedPubMedCentralGoogle Scholar
  199. Livermore DM (1996) Are all beta-lactams created equal? Scand J Infect Dis Suppl 101:33–43PubMedGoogle Scholar
  200. Loessner MJ, Scherer S (1995) Organization and transcriptional analysis of the Listeria phage A511 late gene region comprising the major capsid and tail sheath protein genes cps and tsh. J Bacteriol 177:6601–6609PubMedPubMedCentralCrossRefGoogle Scholar
  201. Loessner MJ, Schneider A, Scherer S (1996) Modified Listeria bacteriophage lysin genes (ply) allow efficient overexpression and one-step purification of biochemically active fusion proteins. Appl Environ Microbiol 62:3057–3060PubMedPubMedCentralGoogle Scholar
  202. Loś JM, Loś M, Węgrzyn A, Węgrzyn G (2013) Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 2:166PubMedPubMedCentralCrossRefGoogle Scholar
  203. Loutit JS (1958) A transduction-like process within a single strain of Pseudomonas aeruginosa. J Gen Microbiol 18:315–319PubMedCrossRefGoogle Scholar
  204. Luedemann GM, Brodsky BC (1963) Taxonomy of gentamicin-producing Micromonospora. Antimicrob Agents Chemother (Bethesda) 161:116–124Google Scholar
  205. Lukyanenko V, Malyukova I, Hubbard A, Delannoy M, Boedeker E, Zhu C, Cebotaru L, Kovbasnjuk O (2011) Enterohemorrhagic Escherichia coli infection stimulates Shiga toxin 1 macropinocytosis and transcytosis across intestinal epithelial cells. Am J Physiol Cell Physiol 301:C1140–C1149PubMedPubMedCentralCrossRefGoogle Scholar
  206. Luria SE (1946) A test for penicillin sensitivity and resistance in Staphylococcus. Proc Soc Exp Biol Med 61:46–51PubMedCrossRefGoogle Scholar
  207. Lutz KA, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913PubMedCrossRefGoogle Scholar
  208. Ma XX, Ito T, Kondo Y, Cho M, Yoshizawa Y, Kaneko J, Katai A, Higashiide M, Li S, Hiramatsu K (2008) Two different Panton-Valentine leukocidin phage lineages predominate in Japan. J Clin Microbiol 46:3246–3258PubMedPubMedCentralCrossRefGoogle Scholar
  209. MacLeod CM, Hodges RG (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82:445–465PubMedPubMedCentralCrossRefGoogle Scholar
  210. Magid M, Keeling BH, Reichenberg JS (2015) Neurotoxins: expanding uses of neuromodulators in medicine-major depressive disorder. Plast Reconstr Surg 136:111S–119S.  https://doi.org/10.1097/PRS.0000000000001733 CrossRefPubMedGoogle Scholar
  211. Mankiewicz E, Liivak M, Dernuet S (1969) Lysogenic mycobacteria: phage variations and changes in host cells. J Gen Microbiol 55:409–416PubMedCrossRefGoogle Scholar
  212. Marshall BJ, Warren JR (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 321:1273–1275CrossRefGoogle Scholar
  213. Matsiota-Bernard P, Vrioni G, Marinis E (1998) Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Greece. J Clin Microbiol 36:20–23PubMedPubMedCentralGoogle Scholar
  214. Maumus F, Epert A, Nogué F, Blanc G (2014) Plant genomes enclose footprints of past infections by giant virus relatives. Nat Commun 5:4268PubMedPubMedCentralCrossRefGoogle Scholar
  215. Maximescu P (1968) New host-strains for the lysogenic Corynebacterium diphtheriae Park Williams No. 8 strain. J Gen Microbiol 53:125–133PubMedCrossRefGoogle Scholar
  216. Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW (2011) Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol 52:559–564.  https://doi.org/10.1111/j.1472-765X.2011.03043.x CrossRefPubMedGoogle Scholar
  217. McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH (2010) High frequency of horizontal gene transfer in the oceans. Science 330:50PubMedCrossRefGoogle Scholar
  218. McDonnell M, Ronda C, Tomasz A (1975) “Diplophage”: a bacteriophage of Diplococcus pneumoniae. Virology 63:577–582PubMedCrossRefGoogle Scholar
  219. McKane L, Ferretti JJ (1981) Phage-host interactions and the production of type A streptococcal exotoxin in group A streptococci. Infect Immun 34:915–919.  https://doi.org/10.1126/science.1192243 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Mechold U, Steiner K, Vettermann S, Malke H (1993) Genetic organization of the streptokinase region of the Streptococcus equisimilis H46A chromosome. Mol Gen Genet 241:129–140PubMedCrossRefGoogle Scholar
  221. Merrick M, Filser M, Kennedy C, Dixon R (1978) Polarity of mutations induced by insertion of transposons Tn5, Tn7 and Tn10 into the nif gene cluster of Klebsiella pneumoniae. Mol Gen Genet 165:103–111PubMedCrossRefGoogle Scholar
  222. Metcalf BJ, Chochua S, Gertz RE Jr, Li Z, Walker H, Tran T, Hawkins PA, Glennen A, Lynfield R, Li Y, McGee L, Beall B (2016) Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect 22:1002.e11002.e8Google Scholar
  223. Metcalfe NH (2011) Sir Geoffrey Marshall (1887-1982): respiratory physician, catalyst for anaesthesia development, doctor to both Prime Minister and King, and World War I Barge Commander. J Med Biogr 19:10–14PubMedCrossRefGoogle Scholar
  224. Miller CP, Bohnhoff M (1946) The development of penicillin resistance by meningococcus in vivo. J Bacteriol 51:580PubMedGoogle Scholar
  225. Moncalvo F, Moreo G (1966) Ricerche cliniche preliminari sull’impiego di una nuova rifamicina orale (rifaldazina) nella terapia della tubercolosi polmonare (nota preventiva). G Ital Tuberc Mal Torace 20:120–131Google Scholar
  226. Monier JM, Demanèche S, Delmont TO, Mathieu A, Vogel TM, Simonet P (2011) Metagenomic exploration of antibiotic resistance in soil. Curr Opin Microbiol 14:229–235PubMedCrossRefGoogle Scholar
  227. Moon BY, Park JY, Hwang SY, Robinson DA, Thomas JC, Fitzgerald JR, Park YH, Seo KS (2015) Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 5:9784PubMedPubMedCentralCrossRefGoogle Scholar
  228. Morales M, García P, de la Campa AG, Liñares J, Ardanuy C, García E (2010) Evidence of localized prophage-host recombination in the lytA gene, encoding the major pneumococcal autolysin. J Bacteriol 192:2624–2632PubMedPubMedCentralCrossRefGoogle Scholar
  229. Müller J, Reinert H, Malke H (1989) Streptokinase mutations relieving Escherichia coli K-12 (prlA4) of detriments caused by the wild-type skc gene. J Bacteriol 171:2202–2208PubMedPubMedCentralCrossRefGoogle Scholar
  230. Muniesa M, García A, Miró E, Mirelis B, Prats G, Jofre J, Navarro F (2004) Bacteriophages and diffusion of β-lactamase genes. Emerg Infect Dis 10:1134–1137PubMedPubMedCentralCrossRefGoogle Scholar
  231. Muniesa M, Hammerl JA, Hertwig S, Appel B, Brüssow H (2012) Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 78:4065–4073PubMedPubMedCentralCrossRefGoogle Scholar
  232. Murray EGD, Webb RE, Swann MBR (1926) A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes. J Pathol Bacteriol 29:407–439CrossRefGoogle Scholar
  233. Newcombe HB, Hawirko R (1949) Spontaneous mutation to streptomycin resistance and dependence in Escherichia coli. J Bacteriol 57:565–572PubMedPubMedCentralGoogle Scholar
  234. Niu YD, Stanford K, Ackermann HW, McAllister TA (2012) Characterization of 4 T1-like lytic bacteriophages that lyse Shiga-toxin Escherichia coli O157:H7. Can J Microbiol 58:923–927PubMedCrossRefGoogle Scholar
  235. Niu YD, McAllister TA, Nash JH, Kropinski AM, Stanford K (2014) Four Escherichia coli O157:H7 phages: a new bacteriophage genus and taxonomic classification of T1-like phages. PLoS One 9:e100426PubMedPubMedCentralCrossRefGoogle Scholar
  236. Nnalue NA, Lindberg AA (1990) Salmonella choleraesuis strains deficient in O antigen remain fully virulent for mice by parenteral inoculation but are avirulent by oral administration. Infect Immun 58:2493–2501PubMedPubMedCentralGoogle Scholar
  237. Nomura N, Yamagishi H, Oka A (1978) Isolation and characterization of transducing coliphage fd carrying a kanamycin resistance gene. Gene 3:39–51PubMedCrossRefGoogle Scholar
  238. Novick RP, Subedi A (2007) The SaPIs: mobile pathogenicity islands of Staphylococcus. Chem Immunol Allergy 93:42–57PubMedCrossRefGoogle Scholar
  239. Novick RP, Christie GE, Penadés JR (2010) The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol 8:541–551PubMedPubMedCentralCrossRefGoogle Scholar
  240. Ochang EA, Udoh UA, Emanghe UE, Tiku GO, Offor JB, Odo M, Nkombe E, Owuna OE, Obeten SM, Meremikwu MM (2016) Evaluation of rifampicin resistance and 81-bp rifampicin resistant determinant region of rpoB gene mutations of Mycobacterium tuberculosis detected with XpertMTB/Rif in Cross River State, Nigeria. Int J Mycobacteriol 5:S145–S146PubMedCrossRefGoogle Scholar
  241. Ochiai KT, Yamanaka T, Kimura K, Sawada O (1959) Studies on inheritance of drug resistance between Shigella strains and Escherichia coli strains. Nihon Iji Shimpo 1861:34–46Google Scholar
  242. Ogston A (1984) On Abscesses. Classics in infectious diseases. Rev Infect Dis 6:122–128CrossRefGoogle Scholar
  243. Oguma K, Iida H, Inoue K (1973) Bacteriophage and toxigenicity in Clostridium botulinum: an additional evidence for phage conversion. Jpn J Microbiol 17:425–426PubMedCrossRefGoogle Scholar
  244. Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226PubMedCrossRefGoogle Scholar
  245. Okami Y, Tazaki T, Katumatas HK, Suzuki M, Umezawa H (1959) Studies on Streptomyces kanamyceticus, producer of kanamycin. J Antibiot (Tokyo) 12:252–256Google Scholar
  246. Okanishi M, Utahara R, Okami Y (1966) Infection of the protoplasts of Streptomyces kanamyceticus with deoxyribonucleic acid preparation from actinophage PK-66. J Bacteriol 92:1850–1852PubMedPubMedCentralGoogle Scholar
  247. Orias E, Gartner TK (1966) Suppression of amber and ochre rII mutants of bacteriophage T4 by streptomycin. J Bacteriol 91:2210–2215PubMedPubMedCentralGoogle Scholar
  248. Pacini F (1854) Osservazioni microscopiche e deduzioni patologiche sul cholera asiatico. Gazzetta Medica Italiana: Toscana 4:397–401Google Scholar
  249. Pappenheimer A (1977) Diphtheria toxin. Annu Rev Biochem 46:69–94PubMedCrossRefGoogle Scholar
  250. Passent J, Kaesberg P (1971) Effect of rifampin on the development of ribonucleic acid bacteriophage Qβ. J Virol 8:286–292PubMedPubMedCentralGoogle Scholar
  251. Patterson AC (1965) Bacteriocinogeny and lysogeny in the genus Pseudomonas. J Gen Microbiol 39:295–303CrossRefGoogle Scholar
  252. Pavlovskis OR (1972) Pseudomonas aeruginosa exotoxin: effect on cellular and mitochondrial respiration. J Infect Dis 126:48–53PubMedCrossRefGoogle Scholar
  253. Pérez Del Molino ML, Barbeito-Castiñeiras G, Mejuto B, Alonso P, Fernández A, González-Mediero G (2016) The genotypic study of Mycobacterium tuberculosis complex resistant to isoniazid: Galicia, Spain (2008-2013). Eur J Clin Microbiol Infect Dis 35:1795–1801PubMedCrossRefGoogle Scholar
  254. Peterson JW, Houston CW, Koo FC (1981) Influence of cultural conditions on mitomycin C-mediated bacteriophage induction and release of Salmonella toxin. Infect Immun 32:232–242PubMedPubMedCentralGoogle Scholar
  255. Petridis M, Bagdasarian M, Waldor MK, Walker E (2006) Horizontal transfer of Shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. J Med Entomol 43:288–295PubMedCrossRefGoogle Scholar
  256. Pollack M, Taylor NS, Callahan LT (1977) Exotoxin production by clinical isolates of Pseudomonas aeruginosa. Infect Immun 15:776–780PubMedPubMedCentralGoogle Scholar
  257. Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier J-M (2009) Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic Tobacco. Appl Environ Microbiol 75:3314–3322PubMedPubMedCentralCrossRefGoogle Scholar
  258. Price AR, Frabotta M (1972) Resistance of bacteriophage PBS2 infection to rifampicin, an inhibitor of Bacillus subtilis RNA synthesis. Biochem Biophys Res Commun 48:1578–1585PubMedCrossRefPubMedCentralGoogle Scholar
  259. Quinn RW, Lowry PN (1974) Streptococcal L forms and phage. A clinical-epidemiologic study. Yale J Biol Med 47:86–92PubMedPubMedCentralGoogle Scholar
  260. Rachek LI, Tucker AM, Winkler HH, Wood DO (1998) Transformation of Rickettsia prowazekii to rifampin resistance. J Bacteriol 180:2118–2124PubMedPubMedCentralGoogle Scholar
  261. Ram G, Chen J, Kumar K, Ross HF, Ubeda C, Damle PK, Lane KD, Penadés JR, Christie GE, Novick RP (2012) Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc Natl Acad Sci USA 109:16300–16305PubMedCrossRefGoogle Scholar
  262. Reglinski M, Sriskandan S (2014) The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence 5:127–136PubMedCrossRefGoogle Scholar
  263. Reznikoff WS (2003) Tn5 as a model for understanding DNA transposition. Mol Microbiol 47:1199–1206PubMedCrossRefGoogle Scholar
  264. Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911PubMedPubMedCentralCrossRefGoogle Scholar
  265. Riedel T, Wittmann J, Bunk B, Schober I, Spröer C, Gronow S, Overmann J (2017) A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J Biotechnol. pii: S0168-1656(17)30080-30089Google Scholar
  266. Robbins PW, Keller JM, Wright A, Bernstein RL (1965) Enzymatic and kinetic studies on the mechanism of o-antigen conversion by bacteriophage ε15. J Biol Chem 240:384–390PubMedGoogle Scholar
  267. Ronayne EA, Wan YC, Boudreau BA, Landick R, Cox MM (2016) P1 Ref endonuclease: a molecular mechanism for phage-enhanced antibiotic lethality. PLoS Genet 12:e1005797PubMedPubMedCentralCrossRefGoogle Scholar
  268. Ronda C, López R, García E (1981) Isolation and characterization of a new bacteriophage, Cp-1, infecting Streptococcus pneumoniae. J Virol 40:551–559PubMedPubMedCentralGoogle Scholar
  269. Rondón L, Piuri M, Jacobs WR Jr, de Waard J, Hatfull GF, Takiff HE (2011) Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 49:1838–1842PubMedPubMedCentralCrossRefGoogle Scholar
  270. Sabath LD, Abraham EP (1966) Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J 98:11C–13CPubMedPubMedCentralCrossRefGoogle Scholar
  271. Saitoh M, Tanaka K, Nishimori K, Makino S, Kanno T, Ishihara R, Hatama S, Kitano R, Kishima M, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y, Uchida I (2005) The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. Microbiology 151:3089–3096PubMedCrossRefGoogle Scholar
  272. Salgado-Pabón W, Herrera A, Vu BG, Stach CS, Merriman JA, Spaulding AR, Schlievert PM (2014) Staphylococcus aureus β-toxin production is common in strains with the β-toxin gene inactivated by bacteriophage. J Infect Dis 210:784–792PubMedPubMedCentralCrossRefGoogle Scholar
  273. Sanchini A, Del Grosso M, Villa L, Ammendolia MG, Superti F, Monaco M, Pantosti A (2014) Typing of Panton-Valentine leukocidin-encoding phages carried by methicillin-susceptible and methicillin-resistant Staphylococcus aureus from Italy. Clin Microbiol Infect 20:O840–O846PubMedCrossRefGoogle Scholar
  274. Sanderson KE, Saeed YA (1972) P22-mediated transduction analysis of the rough A (rfa) region of the chromosome of Salmonella typhimurium. J Bacteriol 112:58–63PubMedPubMedCentralGoogle Scholar
  275. Săsărman A, Antohi M (1965) Study on the transduction of streptomycin resistance in Salmonella typhimurium. Arch Roum Pathol Exp Microbiol 24:651–656PubMedGoogle Scholar
  276. Saz AK, Eagle H (1953) The co-killing of penicillin sensitive and penicillin resistant bacteria at low concentrations of the antibiotic. J Bacteriol 66:347–352PubMedPubMedCentralGoogle Scholar
  277. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011) Foodborne illness acquired in the United States-unspecified agents. Emerg Infect Dis 17:16–22PubMedPubMedCentralCrossRefGoogle Scholar
  278. Schmidt B, Lenk V (1958) Observations on the relation between antibiotic resistance and amp; phage type of pathogenic staphylococci. Zentralbl Bakteriol Orig 171:590–600PubMedPubMedCentralGoogle Scholar
  279. Sensi P (1983) History of the development of rifampin. Rev Infect Dis 3:S402–S406CrossRefGoogle Scholar
  280. Sensi P, Margalith P, Timbal MT (1959) Rifomycin, a new antibiotic; preliminary report. Farmaco Sci 14:146–147PubMedPubMedCentralGoogle Scholar
  281. Sheikh HQ, Aqil A, Kirby A, Hossain FS (2015) Panton-Valentine leukocidin osteomyelitis in children: a growing threat. Br J Hosp Med 76:18–24CrossRefGoogle Scholar
  282. Shousha A, Awaiwanont N, Sofka D, Smulders FJ, Paulsen P, Szostak MP, Humphrey T, Hilbert F (2015) Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes. Appl Environ Microbiol 81:4600–4606PubMedPubMedCentralCrossRefGoogle Scholar
  283. Shwartzman G (1946) Studies on the nature of resistance of gram-negative bacilli to penicillin: antagonistic and enhancing effects of amino acids. J Exp Med 83:65–88PubMedPubMedCentralCrossRefGoogle Scholar
  284. Siddiqui KA, Bhattacharyya FK (1987) Phage-induced change of toxigenesis in Vibrio cholerae. J Med Microbiol 23:331–334PubMedCrossRefPubMedCentralGoogle Scholar
  285. Silliker JH, Taylor WI (1957) The relationship between bacteriophages of Salmonellae and their O antigens. J Lab Clin Med 49:460–464PubMedGoogle Scholar
  286. Simonson AB, Servin JA, Skophammer RG, Herbold CW, Rivera MC, Lake JA (2005) Decoding the genomic tree of life. Proc Natl Acad Sci USA 102(Suppl 1):6608–6613PubMedCrossRefGoogle Scholar
  287. Singh S, Bharati AP, Singh N, Pandey P, Joshi P, Singh K, Mitra K, Gayen JR, Sarkar J, Akhtar MS (2014) The prophage-encoded hyaluronate lyase has broad substrate specificity and is regulated by the N-terminal domain. J Biol Chem 289:35225–35236PubMedPubMedCentralCrossRefGoogle Scholar
  288. Siniashina LN, Karataev GI (2006) Molecular evidence for the lysogenic state of microorganisms belonging to the genus Bordetella and characterization of Bordetella parapertussis temperate bacteriophage 66(2.2). Genetika 42:339–348PubMedGoogle Scholar
  289. Siu LK, Lu PL, Chen JY, Lin FM, Chang SC (2003) High-level expression of ampC beta-lactamase due to insertion of nucleotides between -10 and -35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrob Agents Chemother 47:2138–2144PubMedPubMedCentralCrossRefGoogle Scholar
  290. Sjöström JE, Löfdahl S, Philipson L (1975) Transformation reveals a chromosomal locus of the gene(s) for methicillin resistance in Staphylococcus aureus. J Bacteriol 123:905–915PubMedPubMedCentralGoogle Scholar
  291. Skarin H, Segerman B (2014) Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens. PLoS One 9:e107777PubMedPubMedCentralCrossRefGoogle Scholar
  292. Skarin H, Håfström T, Westerberg J, Segerman B (2011) Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics 12:185PubMedPubMedCentralCrossRefGoogle Scholar
  293. Skjold SA, Maxted WR, Wannamaker LW (1982) Transduction of the genetic determinant for streptolysin S in group A streptococci. Infect Immun 38:183–188PubMedPubMedCentralGoogle Scholar
  294. Smeltzer MS, Hart ME, Iandolo JJ (1994) The effect of lysogeny on the genomic organization of Staphylococcus aureus. Gene 138:51–57PubMedCrossRefGoogle Scholar
  295. Smith DI, Lus RG, Rubio Calvo MC, Datta N, Jacob AE, Hedges RW (1975) Third type of plasmid conferring gentamicin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 8:227–230PubMedPubMedCentralCrossRefGoogle Scholar
  296. Soussy CJ, Bouanchaud DH, Fouace J, Dublanchet A, Duval J (1975) A gentamycin resistance plasmid in Staphylococcus aureus. Ann Microbiol (Paris) 126B:91–94Google Scholar
  297. Spears KJ, Roe AJ, Gally DL (2006) A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol Lett 255:187–202PubMedCrossRefPubMedCentralGoogle Scholar
  298. Speyer JF, Lengyel P, Basilio C, Ochoa S (1962) Synthetic polynucleotides and the amino acid code. IV. Proc Natl Acad Sci USA 48:441–448PubMedCrossRefPubMedCentralGoogle Scholar
  299. Spotts CR, Stanier Y (1961) Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature 142:633–637CrossRefGoogle Scholar
  300. Stanczak-Mrozek KI, Laing KG, Lindsay JA (2017) Resistance gene transfer: induction of transducing phage by sub-inhibitory concentrations of antimicrobials is not correlated to induction of lytic phage. J Antimicrob Chemother 72:1624–1631PubMedPubMedCentralCrossRefGoogle Scholar
  301. Stark RM, Gerwig GJ, Pitman RS, Potts LF, Williams NA, Greenman J, Weinzweig IP, Hirst TR, Millar MR (1999) Biofilm formation by Helicobacter pylori. Lett Appl Microbiol 28:121–126PubMedCrossRefGoogle Scholar
  302. Strauch E, Lurz R, Beutin L (2001) Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect Immun 69:7588–7595PubMedPubMedCentralCrossRefGoogle Scholar
  303. Stuart JG, Ferretti JJ (1973) Transduction of rifampin resistance in group A streptococci. J Bacteriol 115:709–710PubMedPubMedCentralGoogle Scholar
  304. Sugiyama H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44:419–448PubMedPubMedCentralGoogle Scholar
  305. Sugiyama H, King GJ (1972) Isolation and taxonomic significance of bacteriophages for non-proteolytic Clostridium botulinum. J Gen Microbiol 70:517–525PubMedCrossRefGoogle Scholar
  306. Sutliff WD, Mason K (1947) Streptomycin resistance of Brucella suis and Eberthella typhosa. Proc Annu Meet Cent Soc Clin Res U S 20:72PubMedGoogle Scholar
  307. Sword CP, Pickett MJ (1961) The isolation and characterization of bacteriophages from Listeria monocytogenes. J Gen Microbiol 25:241–248PubMedCrossRefGoogle Scholar
  308. Takano T, Ikeda S (1976) Phage P1 carrying kanamycin resistance gene of R factor. Virology 70:198–200PubMedCrossRefGoogle Scholar
  309. Tham TN, Guesdon JL (1992) Detection of point mutation in blaT genes of Enterobacteriaceae by biotinylated oligonucleotide probes using microwell hybridization and enzymofluorometric method. Mol Cell Probes 6:79–85PubMedCrossRefGoogle Scholar
  310. Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608PubMedCrossRefGoogle Scholar
  311. Tokunaga T, Sellers MI (1965) Streptomycin induction of premature lysis of bacteriophage-infected mycobacteria. J Bacteriol 89:537–538PubMedPubMedCentralGoogle Scholar
  312. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547CrossRefGoogle Scholar
  313. Tóth I, Sváb D, Bálint B, Brown-Jaque M, Maróti G (2016) Comparative analysis of the Shiga toxin converting bacteriophage first detected in Shigella sonnei. Infect Genet Evol 37:150–157PubMedCrossRefGoogle Scholar
  314. Ullah I, Shah AA, Basit A, Ali M, Khan A, Ullah U, Ihtesham M, Mehreen S, Mughal A, Javaid A (2016) Rifampicin resistance mutations in the 81 bp RRDR of rpoB gene in Mycobacterium tuberculosis clinical isolates using Xpert MTB/RIF in Khyber Pakhtunkhwa, Pakistan: a retrospective study. BMC Infect Dis 16:413PubMedPubMedCentralCrossRefGoogle Scholar
  315. Umezawa H, Ueda M, Maeda K, Yagishita K, Kondo S, Okami Y, Utahara R, Osato Y, Nitta K, Takeuchi T (1957) Production and isolation of a new antibiotic kanamycin. J Antibiot (Tokyo) 10:181–188Google Scholar
  316. van Ermengem E (1897) Ueber einen neuen anaëroben Bacillus und seine Beziehungen zum Botulismus. Z Hyg Infektionskr 26:1–56Google Scholar
  317. Vanessa MD, King C, Kalan L, Morar M, Sung W, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477:457–461CrossRefGoogle Scholar
  318. Vaughan M, Moss J (1978) Mechanism of action of choleragen. J Supramol Struct 8:473–488PubMedCrossRefGoogle Scholar
  319. Vázquez-Boland JA, Domínguez-Bernal G, González-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584PubMedCrossRefGoogle Scholar
  320. Vedithi SC, Lavania M, Kumar M, Kaur P, Turankar RP, Singh I, Nigam A, Sengupta U (2015) A report of rifampin-resistant leprosy from northern and eastern India: identification and in silico analysis of molecular interactions. Med Microbiol Immunol 204:193–203PubMedCrossRefGoogle Scholar
  321. Veses-Garcia M, Liu X, Rigden DJ, Kenny JG, McCarthy AJ, Allison HE (2015) Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 81:8118–8125PubMedPubMedCentralCrossRefGoogle Scholar
  322. Villa TG, Feijoo-Siota L, Rama JL, Sánchez-Pérez A, de Miguel T (2016) Human mutations affecting antibiotics. In: Villa, Viñas (eds) New Weapons to control bacterial growth. Springer, Cham, pp 353–393CrossRefGoogle Scholar
  323. Von Graevenitz A (1964) Genetic transfer of streptomycin and aminopropanolstreptomycin resistance. J Bacteriol 88:960–964Google Scholar
  324. Voureka A (1948) Sensitisation of penicillin resistant bacteria. Lancet I:62CrossRefGoogle Scholar
  325. Výmola F, Krcméry V, Mitsuhashi S (1979) Wild – type Pseudomonas aeruginosa phage AP 34 transducing gentamicin-tobramycin resistance and autoplaque formation. J Hyg Epidemiol Microbiol Immunol 23:74–77PubMedGoogle Scholar
  326. Waksman SA, Reilly HC, Schatz A (1945) Strain specificity and production of antibiotic substances: V. Strain resistance of bacteria to antibiotic substances, especially to streptomycin. Proc Natl Acad Sci USA 31:157–164PubMedCrossRefGoogle Scholar
  327. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914PubMedCrossRefGoogle Scholar
  328. Wall JD, Weaver PF, Gest H (1975) Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch Microbiol 105:217–224PubMedCrossRefGoogle Scholar
  329. Watanabe T, Fukasawa T (1961) Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduction of resistance factors. J Bacteriol 82:202–209PubMedPubMedCentralGoogle Scholar
  330. Watanabe T, Lyang KW (1962) Episome-mediated transfer of drug resistance in Enterobacteriaceae. V. Spontaneous segregation and recombination of resistance factors in Salmonella typhimurium. J Bacteriol 84:422–430PubMedPubMedCentralGoogle Scholar
  331. Watanabe T, Watanabe M (1959) Transduction of streptomycin resistance in Salmonella typhimurium. Microbial 21:16–29Google Scholar
  332. Watson JM, Holloway BW (1978) Linkage map of Pseudomonas aeruginosa PAT. J Bacteriol 136:507–521PubMedPubMedCentralGoogle Scholar
  333. Weeks CR, Ferretti JJ (1984) The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun 46:531–536PubMedPubMedCentralGoogle Scholar
  334. Witte W, Dünnhaupt K (1984) Occurrence of a nonplasmid-located determinant for gentamicin resistance in strains of Staphylococcus aureus. J Hyg (Lond) 93:1–8CrossRefGoogle Scholar
  335. Woese CR (2004) A new biology for a new century. Microbiol Mol Biol Rev 68:173–186PubMedPubMedCentralCrossRefGoogle Scholar
  336. Wolinsky E, Steenken W (1946) Streptomycin and penicillin resistant staphylococci; influence of pH, body fluids on streptomycin action. Proc Soc Exp Biol Med 62:162–1651PubMedCrossRefGoogle Scholar
  337. Wright A (1971) Mechanism of conversion of the salmonella O antigen by bacteriophage ε34. J Bacteriol 105:927–936PubMedPubMedCentralGoogle Scholar
  338. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186PubMedCrossRefGoogle Scholar
  339. Youmans GP, Williston EH, Feldman WH, Hinshaw HC (1946) Increase in resistance of tubercle bacilli to streptomycin: a preliminary report. Proc Staff Meet Mayo Clin 21:126–127PubMedGoogle Scholar
  340. Yourassowsky E, Schoutens E, Beumer J (1971) Pseudomonas aeruginosa with exceptionally high resistance to gentamicin in hospital wards. Susceptibility and phage typing. Rev Eur Etud Clin Biol 16:927–929PubMedGoogle Scholar
  341. Yue WF, Du M, Zhu MJ (2012) High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7 to non-pathogenic E. coli. PLoS One 7:e31308PubMedPubMedCentralCrossRefGoogle Scholar
  342. Zabriskie JB (1964) The role of temperate bacteriophage in the production of erythrogenic toxin by group a streptococci. J Exp Med 119:761–780PubMedPubMedCentralCrossRefGoogle Scholar
  343. Zeaki N, Susilo YB, Pregiel A, Rådström P, Schelin J (2015) Prophage-encoded staphylococcal enterotoxin A: regulation of production in Staphylococcus aureus strains representing different sea regions. Toxins (Basel) 7:5359–5376CrossRefGoogle Scholar
  344. Zengel JM, Young R, Dennis PP, Nomura M (1977) Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli. J Bacteriol 129:1320–1329PubMedPubMedCentralGoogle Scholar
  345. Zhang J, Fan F, Zhao Y, Sun L, Liu Y, Keegan RM, Isupov MN, Wu Y (2017) Crystal structure of the type IV secretion system component CagX from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 73:167–173PubMedPubMedCentralCrossRefGoogle Scholar
  346. Zhou Y, Sugiyama H, Johnson EA (1993) Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl Environ Microbiol 59:3825–3831PubMedPubMedCentralGoogle Scholar
  347. Zierdt CH, Schmidt PJ (1964) Dissociation in Pseudomonas aeruginosa. J Bacteriol 87:1003–1010PubMedPubMedCentralGoogle Scholar
  348. Zinder N, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • T. G. Villa
    • 1
    Email author
  • L. Feijoo-Siota
    • 1
  • JL. R. Rama
    • 1
  • A. Sánchez-Pérez
    • 2
  • M. Viñas
    • 3
  1. 1.Faculty of Pharmacy, Department of MicrobiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia
  3. 3.Faculty of Medicine, Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations