Implications of Lateral or Horizontal Gene Transfer from Bacteria to the Human Gastrointestinal System for Cancer Development and Treatment

  • A. G. Abril
  • P. G. Lanzi
  • V. NotarioEmail author


The ultimate consequence of horizontal, or lateral, gene transfer, as it is usually understood, is the transient or permanent acquisition by the recipient cell(s) of new, positive or negative, functional characteristics by virtue of the incorporation of the DNA from the donor into their own genome. In reality, it is simply the manifestation of a novel gene expression repertoire(s). It has been recognized for some time that gene expression changes in human cells were primarily the result of structural alterations of their own DNA (mutations, deletions, amplification, or major rearrangements). At present, despite some degree of controversy, it is becoming an increasingly accepted notion that gene expression changes in human cells may be brought about also by their acquisition of exogenous DNA from microorganisms, particularly bacteria, present in the human microbiome. Recent published analyses of information deposited in publicly available data bases of human normal and tumor genome sequences reported a high frequency of detection of bacterial DNA integrated in the human DNA, thus providing solid evidence in support for bacteria-to-human lateral gene transfer. In addition, and most importantly, these studies also showed a much more frequent presence of bacterial DNA in human cancer samples (e.g., acute myeloid leukemia, gastric cancers) than in the DNA samples from healthy individuals, raising the possibility that the bacterial sequences might be directly or indirectly involved in the development of cancer, either by encoding protein/enzyme products with pro-carcinogenic activity or by causing epigenetic alterations that ultimately could lead to genomic instability in the host cells and, later, to carcinogenic progression. This chapter will examine the current status and landmark developments in this still growing and highly innovative research field, focusing on the role of resident bacteria in the onset and/or progression of human gastrointestinal malignancies. We will also discuss the exciting possibility of exploiting bacteria-to-human lateral gene transfer to deliver anticancer therapeutic tools to human tumors.


Gene transfer Human microbiota Gene expression Gastrointestinal malignancies Anti-cancer therapeutics 


  1. Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10:131–144PubMedCrossRefGoogle Scholar
  2. Abreu MT, Peek RM (2014) Gastrointestinal malignancy and the microbiome. Gastroenterology 146:1534–1546PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aggarwala V et al (2017) Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob DNA 8:12PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexander JL et al (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14:356–365PubMedCrossRefGoogle Scholar
  5. Allen JM et al (2018) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50:747–757PubMedCrossRefGoogle Scholar
  6. Arends MJ (2013) Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol 21:97–102PubMedGoogle Scholar
  7. Azzouz D et al (2019) Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis:annrheumdis-2018-214856Google Scholar
  8. Baba Y et al (2017) Review of the gut microbiome and esophageal cancer: pathogenesis and potential clinical implications. Ann Gastroenterol Surg 1:99–104PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baban CK et al (2010) Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 1:6CrossRefGoogle Scholar
  10. Baek MK (2010) Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett 290:123–128PubMedCrossRefGoogle Scholar
  11. Behsen J et al (2013) Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 3:a010074Google Scholar
  12. Beiko RG et al (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102:14332–14337PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benard A et al (2013) Epigenetic status of LINE-1 predicts clinical outcome in early-stage rectal cancer. Br J Cancer 109:3073–3083PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bezine E et al (2014) The cytolethal distending toxin effects on Mammalian cells: a DNA damage perspective. Cell 3:592–615CrossRefGoogle Scholar
  15. Bhatt AP et al (2017) The role of the microbiome in cancer development and therapy. CA Cancer J Clin 67:326–344PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bierne H, Cossart P (2012) When bacteria target the nucleus: the emerging family of nucleomodulins. Cell Microbiol 14:622–633PubMedCrossRefGoogle Scholar
  17. Bierne H et al (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2:a010272PubMedPubMedCentralCrossRefGoogle Scholar
  18. Biteen JS et al (2016) Tools for the microbiome: nano and beyond. ACS Nano 10:6–37PubMedCrossRefGoogle Scholar
  19. Bitto NJ et al (2017) Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep 7:7072PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blaser MJ, Kirshner D (2007) The equilibria that allow bacterial persistence in human hosts. Nature 449:843–849PubMedCrossRefGoogle Scholar
  21. Boto L (2014) Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc Biol Sci 281:20132450PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brawner KM et al (2014) Gastric microbiome and gastric cancer. Cancer J 20:211–216PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bullman S et al (2017) Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:1443–1448PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bultman SJ (2014) Emerging roles of the microbiome in cancer. Carcinogenesis 35:249–255PubMedCrossRefGoogle Scholar
  25. Burns MB, Blekhman R (2018) Integrating tumor genomics into studies of the microbiome in colorectal cancer. Gut Microbes:1–6. PubMedCrossRefGoogle Scholar
  26. Burns MB et al (2018) Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genet 14:e1007376PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cancer Facts and Figures (2018) American Cancer Society. AtlantaGoogle Scholar
  28. Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67:1716–1725PubMedPubMedCentralCrossRefGoogle Scholar
  29. Carding S et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191PubMedGoogle Scholar
  30. Cario E (2013) Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol 29:85–91PubMedCrossRefGoogle Scholar
  31. Castellarin M et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  32. Celec P, Gardlik R (2017) Gene therapy using bacterial vectors. Front Biosci 22:81–95CrossRefGoogle Scholar
  33. Cervantes-Barragán L et al (2017) Lactobacillus reuteri induces gut intraepithelial CD4+ CD8αα+ T cells. Science 357:806–810PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chen Y et al (2014) Viral carcinogenesis: factors inducing DNA damage and virus integration. Cancers 6:2155–2186PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chen Y et al (2017) Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 8:31802–31814PubMedPubMedCentralGoogle Scholar
  36. Cheung SG et al (2019) Systematic review of gut microbiota and major depression. Front Psych 10:34CrossRefGoogle Scholar
  37. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270PubMedPubMedCentralCrossRefGoogle Scholar
  38. Choi IJ et al (2018) Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N Engl J Med 378:1085–1095PubMedCrossRefGoogle Scholar
  39. Chou S et al (2015) Transferred interbacterial antagonism genes augment eukaryotic innate immune function. Nature 518:98–101PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chroscinski D et al (2014) Registered report: melanoma genome sequencing reveals frequent PREX2 mutations. elife 3:e04180. CrossRefPubMedCentralPubMedGoogle Scholar
  41. Chung H et al (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593PubMedPubMedCentralCrossRefGoogle Scholar
  42. Citi S (2018) Intestinal barriers protect against disease. Science 359:1097–1098PubMedCrossRefGoogle Scholar
  43. Claesson MJ et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(1):4586–4591PubMedCrossRefGoogle Scholar
  44. Cohen NA, Maharshak N (2017) Novel indications for fecal microbial transplantation: update and review of the literature. Dig Dis Sci 62:1131–1145PubMedCrossRefGoogle Scholar
  45. Cohen LJ et al (2017) Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549:48–53PubMedPubMedCentralCrossRefGoogle Scholar
  46. Corning D et al (2018) The esophageal microbiome in health and disease. Curr Gastroenterol Rep 20:39PubMedCrossRefGoogle Scholar
  47. Couturier-Maillard A et al (2013) NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 123:700–711PubMedPubMedCentralGoogle Scholar
  48. Crisp A et al (2015) Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol 16:50PubMedPubMedCentralCrossRefGoogle Scholar
  49. Cui J et al (2015) Comprehensive characterization of the genomic alterations in human gastric cancer. Int J Cancer 137:86–95PubMedCrossRefGoogle Scholar
  50. Cui M et al (2016) Circadian rhythm shapes the gut microbiota affecting host radiosensitivity. Int J Mol Sci 17:E1786PubMedCrossRefGoogle Scholar
  51. Cui M et al (2017) Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med 9:448–461PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dahmus JD et al (2018) The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J Gastrointest Oncol 9:769–777PubMedPubMedCentralCrossRefGoogle Scholar
  53. Das A et al (2016) Xenobiotic metabolism and gut microbiomes. PLoS One 11:e0163099PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dejea CM et al (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:592–597PubMedPubMedCentralCrossRefGoogle Scholar
  55. Desphande NP et al (2018) Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome 6:227CrossRefGoogle Scholar
  56. Di Pilato V et al (2016) The esophageal microbiota in health and disease. Ann N Y Acad Sci 1381:21–33PubMedCrossRefGoogle Scholar
  57. Ding SZ et al (2010) Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS One 5:e9875PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ding C et al (2018) Intestinal microbiota: a novel perspective in colorectal cancer biotherapeutics. Onco Targets Ther 11:4797–4810PubMedPubMedCentralCrossRefGoogle Scholar
  59. Dominguez Bello MG et al (2018) Preserving microbial diversity. Science 362:33–34CrossRefGoogle Scholar
  60. Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975PubMedPubMedCentralCrossRefGoogle Scholar
  61. Donaldson GP et al (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795–800PubMedPubMedCentralCrossRefGoogle Scholar
  62. Doran KS et al (2013) Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 3:a010090PubMedPubMedCentralCrossRefGoogle Scholar
  63. Duning Hotopp JC et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756CrossRefGoogle Scholar
  64. Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dunning Hotopp JC (2018) Grafting or pruning in the animal tree: lateral gene transfer and gene loss? BMC Genomics 19:470PubMedPubMedCentralCrossRefGoogle Scholar
  66. Dziki L et al (2017) Modulation of colorectal cancer risk by polymorphisms in 51Gln/His, 64Ile/Val, and 148Asp/Glu of APEX gene; 23Gly/Ala of XPA gene; and 689Ser/Arg of ERCC4 gene. Gastroenterol Res Pract 2017:3840243PubMedPubMedCentralCrossRefGoogle Scholar
  67. Faith JJ et al (2013) The long-term stability of the human gut microbiota. Science 341:1237439PubMedPubMedCentralCrossRefGoogle Scholar
  68. Falony G et al (2016) Population-level analysis of gut microbiome variation. Science 352:560–564PubMedCrossRefGoogle Scholar
  69. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol 6:479–507PubMedCrossRefGoogle Scholar
  70. Fernández MF et al (2018) Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health 15:E1747. CrossRefPubMedGoogle Scholar
  71. Fine B et al (2009) Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 325:1261–1265PubMedPubMedCentralCrossRefGoogle Scholar
  72. Fischbach MA (2018) Microbiome: focus on causation and mechanism. Cell 174:785–790PubMedPubMedCentralCrossRefGoogle Scholar
  73. Flemer B et al (2017) Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66:633–643PubMedCrossRefGoogle Scholar
  74. Flint HJ et al (2017) The impact of nutrition on intestinal bacterial communities. Curr Opin Microbiol 38:59–65PubMedCrossRefGoogle Scholar
  75. Foster JA et al (2012) Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life. Brief Bioinform 13:420–429PubMedPubMedCentralCrossRefGoogle Scholar
  76. Frank DN et al (2007) Molecular–phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785PubMedPubMedCentralCrossRefGoogle Scholar
  77. Fulbright LE et al (2017) The microbiome and the hallmarks of cancer. PLoS Pathog 13:e1006480PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gevers D et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gilbert JA et al (2018) Current understanding of the human microbiome. Nat Med 24:392–400PubMedCrossRefGoogle Scholar
  80. Goel A, Boland CR (2012) Epigenetics of colorectal cancer. Gastroenterology 143:1442–1460PubMedPubMedCentralCrossRefGoogle Scholar
  81. Golombos DM et al (2018) The role of gut microbiome in the pathogenesis of prostate Cancer: a prospective, pilot study. Urology 111:122–128PubMedCrossRefGoogle Scholar
  82. González-Sarrías A (2010) NF-kappaB-dependent anti-inflammatory activity of urolithins, gut microbiota ellagic acid-derived metabolites, in human colonic fibroblasts. Br J Nutr 104:503–512PubMedCrossRefGoogle Scholar
  83. Goodman B, Gardner H (2018) The microbiome and cancer. J Pathol 244:667–676PubMedCrossRefGoogle Scholar
  84. Goodrich GM et al (2014) Conducting a microbiome study. Cell 158:250–262PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gopalakrishnan V et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103PubMedPubMedCentralCrossRefGoogle Scholar
  86. Goubet AG et al (2018) The impact of the intestinal microbiota in therapeutic responses against cancer. C R Biol 341:284–289PubMedCrossRefGoogle Scholar
  87. Graillot V et al (2016) Genotoxicity of cytolethal distending toxin (CDT) on isogenic human colorectal cell lines: potential promoting effects for colorectal carcinogenesis. Front Cell Infect Microbiol 6:34PubMedPubMedCentralCrossRefGoogle Scholar
  88. Greathouse KL et al (2018) Interaction between the microbiome and TP53 in human lung cancer. Genome Biol 19:123PubMedPubMedCentralCrossRefGoogle Scholar
  89. Groth AC et al (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97:5995–6000PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hagland HR, Søreide K (2015) Cellular metabolism in colorectal carcinogenesis: influence of lifestyle, gut microbiome and metabolic pathways. Cancer Lett 356:273–280PubMedCrossRefGoogle Scholar
  91. Hancks DC, Kazazian HH (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22:191–203PubMedPubMedCentralCrossRefGoogle Scholar
  92. He S et al (2016) Upregulation of PREX2 promotes the proliferation and migration of hepatocellular carcinoma cells via PTEN-AKT signaling. Oncol Lett 11:2223–2228PubMedPubMedCentralCrossRefGoogle Scholar
  93. Hemminki K, Boffetta P (2004) Multiple primary cancers as clues to environmental and heritable causes of cancer and mechanisms of carcinogenesis. IARC Sci Publ 157:289–297Google Scholar
  94. Hodgetts T et al (2018) The microbiome and its publics: a participatory approach for engaging publics with the microbiome and its implications for health and hygiene. EMBO Rep 19:e45786PubMedPubMedCentralCrossRefGoogle Scholar
  95. Huang W et al (2017) Widespread of horizontal gene transfer in the human genome. BMC Genomics 18:274PubMedPubMedCentralCrossRefGoogle Scholar
  96. Huerta-Cepas J et al (2007) The human phylome. Genome Biol 8:R109PubMedPubMedCentralCrossRefGoogle Scholar
  97. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Hum 100:1–441PubMedPubMedCentralGoogle Scholar
  98. Jiang H et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194PubMedCrossRefGoogle Scholar
  99. Jin C et al (2019) Commensal microbiota promote lung cancer development via γδT cells. Cell 176:998–1013PubMedCrossRefGoogle Scholar
  100. Jobin C (2018) Precision medicine using microbiota. Science 359:32–34PubMedCrossRefGoogle Scholar
  101. Johnson et al (2015) Prebiotics modulate the effects of antibiotics on gut microbial diversity and functioning in vitro. Nutrients 7:4480–4497PubMedPubMedCentralCrossRefGoogle Scholar
  102. Jones RB et al (2018) Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci Rep 8:4139PubMedPubMedCentralCrossRefGoogle Scholar
  103. Kaakush NO (2018) Microbiome and esophageal adenocarcinoma. Cancer Res 78:1574CrossRefGoogle Scholar
  104. Kelly D, Mulder IE (2012) Microbiome and immunological interactions. Nutr Rev 70(1):S18–S30PubMedCrossRefGoogle Scholar
  105. Kelly DL et al (2016) The microbiome and cancer: implications for oncology nursing science. Cancer Nurs 39:E56–E62PubMedCrossRefGoogle Scholar
  106. Kesselring R et al (2016) IRAK-M expression in tumor cells supports colorectal cancer progression through reduction of antimicrobial defense and stabilization of STAT3. Cancer Cell 29:684–696PubMedCrossRefGoogle Scholar
  107. Kikuchi S (2002) Epidemiology of Helicobacter pylori and gastric cancer. Gastric Cancer 5:6–15PubMedCrossRefGoogle Scholar
  108. Kim E et al (2016) Rapidly cycling Lgr5+ stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk. Cell Death Dis 7:e2460PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kim W-J et al (2018) Uropathogenic Escherichia coli invades bladder epithelial cells by activating kinase networks in host cells. J Biol Chem 293:16518–16527PubMedCrossRefGoogle Scholar
  110. Koga T et al (2002) Experimental Helicobacter pylori gastric infection in miniature pigs. J Med Microbiol 51:238–246PubMedCrossRefGoogle Scholar
  111. Kominek J et al (2019) Eukaryotic acquisition of a bacterial operon. Cell 176:1356–1366PubMedCrossRefGoogle Scholar
  112. Koppel N et al (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356:eaag2770PubMedCrossRefGoogle Scholar
  113. Kostic AD et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kostic AD et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215CrossRefGoogle Scholar
  115. Kowarsky M et al (2017) Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci U S A 114:9623–9628PubMedPubMedCentralCrossRefGoogle Scholar
  116. Krautkramer KA et al (2016) Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64:982–992PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kroemer G, Zitvogel L (2018) Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nat Rev Immunol 18:87–88PubMedCrossRefGoogle Scholar
  118. Kumar H et al (2014) Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio 5:e02113–e02114PubMedPubMedCentralGoogle Scholar
  119. Lacroix B, Citovsky V (2016) Transfer of DNA from bacteria to eukaryotes. MBio 7:e00863–e00816PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lander ES, International Human Genome Sequencing Consortium et al (2001) Initial sequencing and analysis of human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  121. Lee E-S et al (2017) Dysbiosis of gut microbiome and its impact on epigenetic regulation. J Clin Epigenetics 3:14Google Scholar
  122. Lemichez E, Barbieri JT (2013) General aspects and recent advances on bacterial protein toxins. Cold Spring Harb Perspect Med 3:a013573PubMedPubMedCentralCrossRefGoogle Scholar
  123. Lerner A et al (2017) Transglutaminases in dysbiosis as potential environmental drivers of autoimmunity. Front Microbiol 8:66PubMedPubMedCentralGoogle Scholar
  124. Lichtenstein P et al (2000) Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedCrossRefGoogle Scholar
  125. Lissanu Deribe Y (2016) Mechanistic insights into the role of truncating PREX2 mutations in melanoma. Mol Cell Oncol 3:e1160174PubMedPubMedCentralCrossRefGoogle Scholar
  126. Liu W et al (2016) Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr Opin Virol 20:20–27PubMedPubMedCentralCrossRefGoogle Scholar
  127. Llosa M et al (2012) New perspectives into bacterial DNA transfer to human cells. Trends Microbiol 20:355–359PubMedCrossRefGoogle Scholar
  128. Louis P et al (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672PubMedCrossRefGoogle Scholar
  129. Lu R et al (2017) Presence of Salmonella AvrA in colorectal tumor and its precursor lesions in mouse intestine and human specimens. Oncotarget 8:55104–55115PubMedPubMedCentralGoogle Scholar
  130. Luckey TD (1972) Introduction to intestinal microecology. Am J Clin Nutr 25:1292–1294PubMedCrossRefGoogle Scholar
  131. Ma C et al (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360(6391):eaan5931PubMedPubMedCentralCrossRefGoogle Scholar
  132. Maier L et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628PubMedPubMedCentralCrossRefGoogle Scholar
  133. Maisonneuve C et al (2018) The impact of the gut microbiome on colorectal cancer. Annu Rev Cancer Biol 2:229–249CrossRefGoogle Scholar
  134. Malinowski B et al (2019) The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer. Infect Agent Cancer 14:3PubMedPubMedCentralCrossRefGoogle Scholar
  135. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315PubMedCrossRefGoogle Scholar
  136. Maruvada P et al (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22:589–599PubMedCrossRefGoogle Scholar
  137. Matson V et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359:104–108PubMedPubMedCentralCrossRefGoogle Scholar
  138. McCoy AN et al (2013) Fusobacterium is associated with colorectal adenomas. PLoS One 8:e53653PubMedPubMedCentralCrossRefGoogle Scholar
  139. Metcalf JA et al (2014) Antibacterial gene transfer across the tree of life. elife 3:e04266. CrossRefPubMedCentralPubMedGoogle Scholar
  140. Mira-Pascual L et al (2015) Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol 50:167–179PubMedCrossRefGoogle Scholar
  141. Mitarai N et al (2016) Population dynamics of phage and bacteria in spatially structured habitats using phage λ and Escherichia coli. J Bacteriol 198:1783–1793PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mohanan V et al (2018) C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 359:1161–1166PubMedPubMedCentralCrossRefGoogle Scholar
  143. Moosavi S (2014) Location-specific effect of microbiota and MyD88-dependent signaling on Wnt/β-catenin pathway and intestinal stem cells. Gut Microbes 5:11–14CrossRefGoogle Scholar
  144. Moreira D, Lopez-Garcia P (2017) Protist evolution: stealing genes to gut it out. Curr Biol 27:R223–R225PubMedPubMedCentralCrossRefGoogle Scholar
  145. Morishita Y, Shimizu T (1983) Promoting effect of intestinal Pseudomonas aeruginosa on gastric tumorigenesis in rats with N-methyl-N′-nitro-N-nitrosoguanidine. Cancer Lett 17:347–352PubMedCrossRefGoogle Scholar
  146. Moss SF (2017) The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol 3:183–191PubMedCrossRefGoogle Scholar
  147. Mughini-Gras L et al (2018) Increased colon cancer risk after severe Salmonella infection. PLoS One 13:e0189721PubMedPubMedCentralCrossRefGoogle Scholar
  148. Munro MJ et al (2018) Cancer stem cells in colorectal cancer: a review. J Clin Pathol 71:110–116PubMedCrossRefGoogle Scholar
  149. Naito T et al (2017) Lipopolysaccharide from crypt-specific core microbiota modulates the colonic epithelial proliferation-to-differentiation balance. MBio 8:e01680–e01617PubMedPubMedCentralCrossRefGoogle Scholar
  150. Nakata K et al (2017) Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. J Biol Chem 292:15426–15433PubMedPubMedCentralCrossRefGoogle Scholar
  151. Nardone G, Compare D (2015) The human gastric microbiota: is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol J 3:255–260PubMedPubMedCentralCrossRefGoogle Scholar
  152. Narihiro T, Kanagata Y (2017) Genomics and metagenomics in microbial ecology: recent advances and challenges. Microbes Environ 32:1–4PubMedPubMedCentralCrossRefGoogle Scholar
  153. Navarro F, Muniesa M (2017) Phages in the human body. Front Microbiol 8:566PubMedPubMedCentralGoogle Scholar
  154. Nguyen S et al (2017) Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. MBio 8:e01874–e01817PubMedPubMedCentralGoogle Scholar
  155. Ni J et al (2017) A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci Transl Med 9:eaah6888PubMedPubMedCentralCrossRefGoogle Scholar
  156. Niederreiter L et al (2018) Food, microbiome and colorectal cancer. Dig Liver Dis 50:647–652PubMedCrossRefGoogle Scholar
  157. Nistal E et al (2015) Factors determining colorectal cancer: the role of the intestinal microbiota. Front Oncol 5:220PubMedPubMedCentralCrossRefGoogle Scholar
  158. Noto JM, Peek RM (2017) The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog 13:e1006573PubMedPubMedCentralCrossRefGoogle Scholar
  159. O’Connell Motherway M et al (2019) A Bifidobacterial pilus-associated protein promotes colonic epithelial proliferation. Mol Microbiol 111:287–301PubMedCrossRefGoogle Scholar
  160. Ochman H et al (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  161. Park SY et al (2009) Comparison of CpG island hypermethylation and repetitive DNA hypomethylation in premalignant stages of gastric cancer, stratified for Helicobacter pylori infection. J Pathol 219:410–416PubMedCrossRefGoogle Scholar
  162. Paul B et al (2015) Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 7:112PubMedPubMedCentralCrossRefGoogle Scholar
  163. Perduca V et al (2018) Mutational and epigenetic signatures in cancer tissue linked to environmental exposures and lifestyle. Curr Opin Oncol 30:61–67PubMedCrossRefGoogle Scholar
  164. Peters BA et al (2017) Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res 77:6777–6787PubMedPubMedCentralCrossRefGoogle Scholar
  165. Porayath C et al (2018) Characterization of the bacteriophages binding to human matrix molecules. Int J Biol Macromol 110:608–615PubMedPubMedCentralCrossRefGoogle Scholar
  166. Raza MH et al (2019) Microbiota in cancer development and treatment. J Cancer Res Clin Oncol 45:49–63CrossRefGoogle Scholar
  167. Reticker-Flynn NE, Engleman EG (2019) A gut punch fights cancer and infection. Nature 565:573–574PubMedCrossRefGoogle Scholar
  168. Riley DR et al (2013) Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol 9:e1003107PubMedPubMedCentralCrossRefGoogle Scholar
  169. Robinson KM, Dunning Hotopp JC (2014) Mobile elements and viral integrations prompt considerations for bacterial DNA integration as a novel carcinogen. Cancer Lett 352:137–144PubMedPubMedCentralCrossRefGoogle Scholar
  170. Robinson KM et al (2013) A review of bacteria-animal lateral gene transfer may inform our understanding of diseases like cancer. PLoS Genet 9:e1003877PubMedPubMedCentralCrossRefGoogle Scholar
  171. Rosadi F et al (2016) Bacterial protein toxins in human cancers. Pathog Dis 74:ftv105PubMedCrossRefGoogle Scholar
  172. Rosner JL (2014) Ten times more microbial cells than body cells in humans? Microbe 9:47Google Scholar
  173. Routy B et al (2018a) The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 15:382–396PubMedCrossRefGoogle Scholar
  174. Routy B et al (2018b) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97PubMedPubMedCentralCrossRefGoogle Scholar
  175. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17:271–285PubMedCrossRefGoogle Scholar
  176. Rubinstein MR et al (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206PubMedPubMedCentralCrossRefGoogle Scholar
  177. Salzberg SL (2017) Horizontal gene transfer is not a hallmark of the human genome. Genome Biol 18:85PubMedPubMedCentralCrossRefGoogle Scholar
  178. Salzberg SL et al (2001) Microbial gene in the human genome: lateral transfer or gene loss? Science 292:1903–1906PubMedCrossRefGoogle Scholar
  179. Savidge TC (2016) Epigenetic regulation of enteric neurotransmission by gut bacteria. Front Cell Neurosci 9:503PubMedPubMedCentralCrossRefGoogle Scholar
  180. Schmidt TSB et al (2018) The human gut microbiome: from association to modulation. Cell 172:1198–1215PubMedCrossRefGoogle Scholar
  181. Schwarzenbach H et al (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437PubMedCrossRefGoogle Scholar
  182. Sekirov I et al (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904PubMedCrossRefGoogle Scholar
  183. Sender R et al (2016a) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340PubMedCrossRefGoogle Scholar
  184. Sender R et al (2016b) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533PubMedPubMedCentralCrossRefGoogle Scholar
  185. Shan J et al (2018) Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep 8:5091PubMedPubMedCentralCrossRefGoogle Scholar
  186. Sieber KB et al (2016) Modeling the integration of bacterial rRNA fragments into the human cancer genome. BMC Bioinf 17:134CrossRefGoogle Scholar
  187. Sieber KB et al (2017) Lateral gene transfer between prokaryotes and eukaryotes. Exp Cell Res 358:421–426PubMedPubMedCentralCrossRefGoogle Scholar
  188. Siegel RL et al (2017) Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970-2014. JAMA 318:572–574PubMedPubMedCentralCrossRefGoogle Scholar
  189. Siegel RL et al (2018) Cancer statistics. CA Cancer J Clin 68:7–30PubMedCrossRefGoogle Scholar
  190. Sivaprakasam S et al (2017) Cell-surface and nuclear receptors in the colon as targets for bacterial metabolites and its relevance to colon health. Nutrients 9:E856PubMedCrossRefGoogle Scholar
  191. Snider EJ et al (2018) Barrett’s esophagus is associated with a distinct oral microbiome. Clin Transl Gastroenterol 9:135PubMedPubMedCentralCrossRefGoogle Scholar
  192. Solyom S et al (2012) Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22:2328–2338PubMedPubMedCentralCrossRefGoogle Scholar
  193. Song EJ et al (2018) Progress of analytical tools and techniques for human gut microbiome research. J Microbiol 10:693–705CrossRefGoogle Scholar
  194. Stecher B et al (2012) Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci U S A 109:1269–1274PubMedPubMedCentralCrossRefGoogle Scholar
  195. Strandwitz P et al (2019) GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 4:396–403PubMedCrossRefGoogle Scholar
  196. Sun J (2010) Enteric bacteria and cancer stem cells. Cancers 3:285–297PubMedCrossRefGoogle Scholar
  197. Sun J, Kato I (2016) Gut microbiota, inflammation and colorectal cancer. Genes Dis 3:130–143PubMedPubMedCentralCrossRefGoogle Scholar
  198. Suzuki K et al (2015) Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers. Res Microbiol 166:753–763PubMedCrossRefGoogle Scholar
  199. Tanoue T et al (2019) A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565:600–605CrossRefGoogle Scholar
  200. Tetz G, Tetz V (2018) Bacteriophages as new human viral pathogens. Microorganisms 6:E54PubMedCrossRefGoogle Scholar
  201. Thierry AR et al (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 35:347–376PubMedPubMedCentralCrossRefGoogle Scholar
  202. Tilg H et al (2018) The intestinal microbiota in colorectal cancer. Cancer Cell 33:954–964PubMedCrossRefGoogle Scholar
  203. Touchefeu Y et al (2014) Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis: current evidence and potential clinical applications. Aliment Pharmacol Ther 40:409–421PubMedGoogle Scholar
  204. Toyofuku M et al (2019) Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 17:13–24PubMedCrossRefGoogle Scholar
  205. Tuan J, Chen Y-X (2016) Dietary and lifestyle factors associated with colorectal cancer risk and interactions with microbiota: Fiber, red or processed meat and alcoholic drinks. Gastrointest Tumors 3:17–24CrossRefGoogle Scholar
  206. Turnbaugh P et al (2007) The human microbiome project. Nature 449:804–810PubMedPubMedCentralCrossRefGoogle Scholar
  207. Vakil N, Megraud F (2007) Eradication therapy for Helicobacter pylori. Gastroenterology 133:985–1001PubMedCrossRefGoogle Scholar
  208. van Elsland D, Neefjes J (2018) Bacterial infections and cancer. EMBO Rep 19:e46632PubMedPubMedCentralCrossRefGoogle Scholar
  209. Venturelli OS et al (2018) Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14:e8157PubMedPubMedCentralCrossRefGoogle Scholar
  210. Vieira M et al (2018) Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359:1156–1161PubMedCentralCrossRefPubMedGoogle Scholar
  211. Wang Y et al (2017) The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357:912–916PubMedPubMedCentralCrossRefGoogle Scholar
  212. Wegmann U et al (2017) Use of genetically modified bacteria for drug delivery in humans: revisiting the safety aspect. Sci Rep 7:2294PubMedPubMedCentralCrossRefGoogle Scholar
  213. Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489:250–256PubMedPubMedCentralCrossRefGoogle Scholar
  214. Wenger SL et al (1981) Incorporation of bacteriophage DNA into the genome of cultured human lymphocytes. In Vitro 17:695–700PubMedCrossRefGoogle Scholar
  215. Werawatganon D (2014) Simple animal model of Helicobacter pylori infection. World J Gastroenterol 20:6420–6424PubMedPubMedCentralCrossRefGoogle Scholar
  216. White MK et al (2014) Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev 27:463–481PubMedPubMedCentralCrossRefGoogle Scholar
  217. Wilson MR et al (2019) The human gut bacterial genotoxin colibactin alkylates DNA. Science 363:eaar7785PubMedCrossRefGoogle Scholar
  218. Wroblewski LE et al (2016) The role of the microbiome in gastrointestinal cancer. Gastroenterol Clin N Am 45:543–556CrossRefGoogle Scholar
  219. Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488PubMedCrossRefGoogle Scholar
  220. Wu S et al (2018a) Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun 9:3490PubMedPubMedCentralCrossRefGoogle Scholar
  221. Wu X et al (2018b) Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J Cancer 9:2510–2517PubMedPubMedCentralCrossRefGoogle Scholar
  222. Xiao HW et al (2018) Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota. Exp Mol Med 50:e433PubMedPubMedCentralCrossRefGoogle Scholar
  223. Xu J et al (2017) Emerging trends in microbiome analysis: from single-cell functional imaging to microbiome. Engineering 3:66–70CrossRefGoogle Scholar
  224. Yang T et al (2013) Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med 19:714–725PubMedCrossRefGoogle Scholar
  225. Yang L et al (2014) Microbiome in reflux disorders and esophageal adenocarcinoma. Cancer J 20:207–210PubMedPubMedCentralCrossRefGoogle Scholar
  226. Yang J et al (2016) PREX2 promotes the proliferation, invasion and migration of pancreatic cancer cells by modulating the PI3K signaling pathway. Oncol Lett 12:1139–1143PubMedPubMedCentralCrossRefGoogle Scholar
  227. Yang Y et al (2017) Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 152:851–866PubMedCrossRefGoogle Scholar
  228. Yilmaz B et al (2019) Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med 25:323–336PubMedCrossRefGoogle Scholar
  229. Yu YN et al (2015) Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 6:32013–32026Google Scholar
  230. Yu G et al (2017a) Molecular characterization of the human stomach microbiota in gastric cancer patients. Front Cell Infect Microbiol 7:302PubMedPubMedCentralCrossRefGoogle Scholar
  231. Yu T et al (2017b) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170:548–563PubMedPubMedCentralCrossRefGoogle Scholar
  232. Zackular JP et al (2014) The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res 7:1112–1121CrossRefGoogle Scholar
  233. Zheng P et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21:786–796PubMedCrossRefGoogle Scholar
  234. Zierer J et al (2018) The fecal metabolome as a functional readout of the gut microbiome. Nat Genet 50:790–795PubMedPubMedCentralCrossRefGoogle Scholar
  235. Zitvogel L (2016) Microbiome and anticancer immunosurveillance. Cell 165:276–287PubMedCrossRefGoogle Scholar
  236. Zitvogel L et al (2017) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15:465–478PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Pharmacy, Department of MicrobiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Radiation Medicine, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashington, DCUSA

Personalised recommendations