Horizontal Gene Transfer in Bacteria, an Overview of the Mechanisms Involved

  • T. G. Villa
  • L. Feijoo-Siota
  • A. Sánchez-Pérez
  • JL. R. Rama
  • C. Sieiro


Bacterial transformation, transduction, and “conjugation” can be considered the first horizontal transfer mechanisms in living organisms; these mechanisms have occurred since the origin of bacteria and are still current. Although mechanistically quite different, the three processes aim to achieve the main objective of all cells, the ability to survive and adapt to new environments. Transformation, transduction, and “conjugation” implement DNA recombination, creating genetic diversity and, hence, allowing bacteria to acquire new capabilities and evolve, resulting in additional, improved, environmental adaptations that enhance bacterial survival. This chapter summarizes old paradigms and novel findings in these three genetic processes and includes the latest research on the recently described vesicle-mediated bacterial communication mechanism.


Horizontal gene transfer Bacterial transformation Transduction Conjugation Bacterial vesicles 



The authors wish to express their gratitude to Dr. J. M. Ageitos for his help with the artwork.


  1. Abdel-Monem M, Taucher-Scholz G, Klinkert MQ (1983) Identification of Escherichia coli DNA helicase I as the traI gene product of the F sex factor. Proc Natl Acad Sci USA 80:4659–4663PubMedCrossRefGoogle Scholar
  2. Abe M, Mizuno D (1959) A contribution to the knowledge of pneumococcus transformation during the period between the incorporation of deoxyribonucleic acid and the appearance of streptomycin resistance. Biochim Biophys Acta 32:464–469PubMedCrossRefGoogle Scholar
  3. Abo T, Inamoto S, Ohtsubo E (1991) Specific DNA binding of the TraM protein to the oriT region of plasmid R100. J Bacteriol 173:6347–6354PubMedPubMedCentralCrossRefGoogle Scholar
  4. Achtman M, Kennedy N, Skurray R (1977) Cell–cell interactions in conjugating Escherichia coli: role of TraT protein in surface exclusion. Proc Natl Acad Sci USA 74:5104–5108PubMedCrossRefGoogle Scholar
  5. Ackermann HW (2015) The lambda – P22 problem. Bacteriophage 5:e1017084PubMedPubMedCentralCrossRefGoogle Scholar
  6. Adams JN, Luria SE (1958) Transduction by bacteriophage P1: abnormal phage function of the transducing particles. Proc Natl Acad Sci USA 44:590–594PubMedCrossRefGoogle Scholar
  7. Agüero ME, Aron L, DeLuca AG, Timmis KN, Cabello FC (1984) A plasmid-encoded outer membrane protein, TraT, enhances resistance of Escherichia coli to phagocytosis. Infect Immun 46:740–746PubMedPubMedCentralGoogle Scholar
  8. Åkerberg C, Hofvendahl K, Zacchi G, Hahn-Hägerdal B (1998) Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl Microbiol Biotechnol 49:682–669CrossRefGoogle Scholar
  9. Albano M, Hahn J, Dubnau D (1987) Expression of competence gene in Bacillus subtilis. J Bacteriol 169:3110–3117PubMedPubMedCentralCrossRefGoogle Scholar
  10. Albano M, Breitling AR, Dubnau DA (1989) Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bacteriol 171:5386–5404PubMedPubMedCentralCrossRefGoogle Scholar
  11. Alexander HE, Leidy G (1951) Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells. J Exp Med 93:345–359PubMedPubMedCentralCrossRefGoogle Scholar
  12. Alexander HE, Redman W (1953) Transformation of type specificity of meningococci; change in heritable type induced by type-specific extracts containing desoxyribonucleic acid. J Exp Med 97:797–806PubMedPubMedCentralCrossRefGoogle Scholar
  13. Aline RF Jr, Reznikoff WS (1975) Bacteriophage Mu-1-induced permeability mutants in Escherichia coli K-12. J Bacteriol 124:578–581PubMedPubMedCentralGoogle Scholar
  14. Ammann A, Neve H, Geis A, Heller KJ (2008) Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. J Bacteriol 190:3083–3087PubMedPubMedCentralCrossRefGoogle Scholar
  15. Anderson TF, Wollman EL, Jacob F (1957) Processes of conjugation and recombination in Escherichia coli. III. Morphological aspects in electron microscopy. Ann Inst Pasteur 93:450–445Google Scholar
  16. Ando T, Israel DA, Kusugami K, Blaser MJ (1999) HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J Bacteriol 181:5572–5580PubMedPubMedCentralGoogle Scholar
  17. Anthony KG, Kathir P, Moore D, Ippen-Ihler K, Frost LS (1996) Analysis of the traLEKBP sequence and the TraP protein from three F-like plasmids: F, R100-1 and ColB2. J Bacteriol 178:3194–3200PubMedPubMedCentralCrossRefGoogle Scholar
  18. Armentrout RW, Rutberg L (1970) Mapping of prophage and mature deoxyribonucleic acid from temperate Bacillus bacteriophage phi 105 by marker rescue. J Virol 6:760–767PubMedPubMedCentralGoogle Scholar
  19. Arthur DC, Ghetu AF, Gubbins MJ, Edwards RA, Frost LS, Glover JN (2003) FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J 22:6346–6355PubMedPubMedCentralCrossRefGoogle Scholar
  20. Arutyunov D, Frost LS (2013) F conjugation: back to the beginning. Plasmid 70:18–32PubMedCrossRefGoogle Scholar
  21. Arutyunov D, Arenson B, Manchak J, Frost LS (2010) F plasmid TraF and TraH are components of an outer membrane complex involved in conjugation. J Bacteriol 192:1730–1734PubMedPubMedCentralCrossRefGoogle Scholar
  22. Attaiech L, Olivier A, Mortier-Barrière I, Soulet AL, Granadel C, Martin B, Polard P, Claverys JP (2011) Role of the single-stranded DNA-binding protein SsbB in pneumococcal transformation: maintenance of a reservoir for genetic plasticity. PLoS Genet 7:e1002156PubMedPubMedCentralCrossRefGoogle Scholar
  23. Audette GF, Manchak J, Beatty P, Klimke WA, Frost LS (2007) Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153:442–451PubMedCrossRefGoogle Scholar
  24. Auer B, Schweiger M (1984) Evidence that Escherichia coli virus T1 induces a DNA methyltransferase. J Virol 49:588–590PubMedPubMedCentralGoogle Scholar
  25. Austrian R, Colowick MS (1953) Modification of the fermentative activities of Pneumococcus through transformation reactions. Bull Johns Hopkins Hosp 92:375–384PubMedGoogle Scholar
  26. Austrian R, Macleod CM (1949) Acquisition of M protein by pneumococci through transformation reactions. J Exp Med 89:451–460PubMedPubMedCentralCrossRefGoogle Scholar
  27. Austrian R, Bernheimer HP, Smith EE, Mills GT (1959) Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical bases of binary capsulation. J Exp Med 110:585–602PubMedPubMedCentralCrossRefGoogle Scholar
  28. Avery OT, Heidelberger M (1923) Immunological relationships of cell constituents of Pneumococcus. J Exp Med 38:81–85PubMedPubMedCentralCrossRefGoogle Scholar
  29. Avery OT, Heidelberger M, Goebel WF (1925) The soluble specific substance of Friedlander’s bacillus: paper II. Chemical and immunological relationships of Pneumococcus type II and of a strain of Friedlander’s bacillus. J Exp Med 42:709–725PubMedPubMedCentralCrossRefGoogle Scholar
  30. Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 79:137–158PubMedPubMedCentralCrossRefGoogle Scholar
  31. Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A, Kotb M (2005) Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J Bacteriol 187:3311–3318PubMedPubMedCentralCrossRefGoogle Scholar
  32. Bachhuber M, Brill WJ, Howe MM (1976) Use of bacteriophage Mu to isolate deletions in the his-nif region of Klebsiella pneumoniae. J Bacteriol 128:749–753PubMedPubMedCentralGoogle Scholar
  33. Baltrus DA, Guillemin K (2006) Multiple phases of competence occur during the Helicobacter pylori growth cycle. FEMS Microbiol Lett 255:148–155PubMedCrossRefGoogle Scholar
  34. Balzer D, Pansegrau W, Lanka E (1994) Essential motifs of relaxase (TraI) and TraG proteins involved in conjugative transfer of plasmid RP4. J Bacteriol 176:4285–4295PubMedPubMedCentralCrossRefGoogle Scholar
  35. Banks DJ, Beres SB, Musser JM (2002) The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 10:515–521PubMedCrossRefGoogle Scholar
  36. Banks DJ, Porcella SF, Barbian KD, Beres SB, Philips LE, Voyich JM, DeLeo FR, Martin JM, Somerville GA, Musser JM (2004) Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis 190:727–738PubMedCrossRefGoogle Scholar
  37. Bao Y, Liang Z, Booyjzsen C, Mayfield JA, Li Y, Lee SW, Ploplis VA, Song H, Castellino FJ (2014) Unique genomic arrangements in an invasive serotype M23 strain of Streptococcus pyogenes identify genes that induce hypervirulence. J Bacteriol 196:4089–4102PubMedPubMedCentralCrossRefGoogle Scholar
  38. Barany F, Kahn ME (1985) Comparison of transformation mechanisms of Haemophilus parainfluenzae and Haemophilus influenzae. J Bacteriol 161:72–79PubMedPubMedCentralGoogle Scholar
  39. Baron LS, Carey WF, Spilman WM (1959) Genetic recombination between Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci USA 45:976–984PubMedCrossRefGoogle Scholar
  40. Bayer ME (1968) Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli. J Virol 2:346–356PubMedPubMedCentralGoogle Scholar
  41. Beattie KL, Setlow JK (1970) Transformation between Haemophilus influenzae and Haemophilus parainfluenzae. J Bacteriol 104:390–400PubMedPubMedCentralGoogle Scholar
  42. Beck CM, Diner EJ, Kim JJ, Low DA, Hayes CS (2014) The F pilus mediates a novel pathway of CDI toxin import. Mol Microbiol 93:276–290PubMedPubMedCentralCrossRefGoogle Scholar
  43. Bendig MM, Drexler H (1977) Transduction of bacteriophage Mu by bacteriophage T1. J Virol 22:640–645PubMedPubMedCentralGoogle Scholar
  44. Bergé M, Mortier-Barrière I, Martin B, Claverys JP (2003) Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol 50:527–536PubMedCrossRefGoogle Scholar
  45. Berndt C, Meier P, Wackernagel W (2003) DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiology 149:895–901PubMedCrossRefGoogle Scholar
  46. Berry ME, McCarthy AM, Plough HH (1952) Transduction of multiple nutritional requirements in Salmonella typhimurium. Proc Natl Acad Sci USA 38:797–803PubMedCrossRefGoogle Scholar
  47. Beutin L, Achtman M (1979) Two Escherichia coli chromosomal cistrons, sfrA and sfrB, which are needed for expression of F factor tra functions. J Bacteriol 139:730–737PubMedPubMedCentralGoogle Scholar
  48. Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014) Bacterial vesicles in marine ecosystems. Science 343:183–186PubMedCrossRefGoogle Scholar
  49. Bingle LE, Zatyka M, Manzoor SE, Thomas CM (2003) Co-operative interactions control conjugative transfer of broad host-range plasmid RK2: full effect of minor changes in TrbA operator depends on KorB. Mol Microbiol 49:1095–1108PubMedCrossRefGoogle Scholar
  50. Birkeland NK, Holo H (1993) Transduction of a plasmid carrying the cohesive end region from Lactococcus lactis bacteriophage PhiLC3. Appl Environ Microbiol 59:1966–1968PubMedPubMedCentralGoogle Scholar
  51. Blaser MJ (1992) Hypotheses on the pathogenesis and natural history of Helicobacter pylori induced inflammation. Gastroenterology 102:720–727PubMedCrossRefGoogle Scholar
  52. Blenkiron, Simonov D, Muthukaruppan A, Tsai P, Dauros P, Green S, Hong J, Print CG, Swift S, Phillips AR (2016) Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One 11(8):e0160440PubMedPubMedCentralCrossRefGoogle Scholar
  53. Blesa A, Berenguer J (2015) Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp. Int Microbiol 18:177–187PubMedGoogle Scholar
  54. Boakes E, Kearns AM, Ganner M, Perry C, Hill RL, Ellington MJ (2011) Distinct bacteriophages encoding Panton-Valentine leukocidin (PVL) among international methicillin-resistant Staphylococcus aureus clones harboring PVL. J Clin Microbiol 49:684–692PubMedPubMedCentralCrossRefGoogle Scholar
  55. Boice LB (1969) Evidence that Bacillus subtilis bacteriophage SP02 is temperate and heteroimmune to bacteriophage phi-105. J Virol 4:47–49PubMedPubMedCentralCrossRefGoogle Scholar
  56. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753PubMedPubMedCentralCrossRefGoogle Scholar
  57. Bonner D (1951) Gene-enzyme relationships in Neurospora. Cold Spring Harb Symp Quant Biol 16:143–158PubMedCrossRefGoogle Scholar
  58. Boram W, Abelson J (1973) Bacteriophage Mu integration: on the orientation of the prophage. Virology 54:102–108PubMedCrossRefGoogle Scholar
  59. Bouck N, Adelberg EA (1963) The relationship between DNA synthesis and conjugation in Escherichia coli. Biochem Biophys Res Commun 11:24–27PubMedCrossRefGoogle Scholar
  60. Boulter J, Lee N (1975) Isolation of specialized transducing bacteriophage lambda carrying genes of the L-arabinose operon of Escherichia coli B/r. J Bacteriol 123:1043–1054PubMedPubMedCentralGoogle Scholar
  61. Boyd JSK (1950) The symbiotic bacteriophages of Salmonella typhimurium. J Pathol Bacteriol 62:501–517PubMedCrossRefGoogle Scholar
  62. Boyd JSK (1951) Excessive dose phenomenon in virus infections. Nature 167:1061–1062PubMedCrossRefGoogle Scholar
  63. Boyd JSK, Parker MT, Mair NS (1951) Symbiotic bacteriophage as a ‘Marker’ in the identitication of strains of Salmonella typhimurium. J Hyg Camb 49:442–451PubMedGoogle Scholar
  64. Bracco RM, Krauss MR, Roe AS, MacLeod CM (1957) Transformation reactions between pneumococcus and three strains of streptococci. J Exp Med 106:247–259PubMedPubMedCentralCrossRefGoogle Scholar
  65. Bradshaw HD Jr, Traxler BA, Minkley EG Jr, Nester EW, Gordon MP (1990) Nucleotide sequence of the traI (helicase I) gene from the sex factor F. J Bacteriol 172:4127–4131PubMedPubMedCentralCrossRefGoogle Scholar
  66. Braun V, Schaller K, Wolff H (1973) A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli B. Biochim Biophys Acta 323:87–97PubMedCrossRefGoogle Scholar
  67. Bray D, Robbins PW (1967) Mechanism of epsilon-15 conversion studies with bacteriphage mutants. J Mol Biol 30:457–475PubMedGoogle Scholar
  68. Briers Y, Staubli T, Schmid MC, Wagner M, Schuppler M, Loessner MJ (2012) Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS One 7:e38514PubMedPubMedCentralCrossRefGoogle Scholar
  69. Brody E, Coleman L, Mackal RP, Werninghaus B, Evans EA Jr (1964) Properties of infectious deoxyribonucleic acid from T1 and λ Bacteriophage. J Biol Chem 239:285–289PubMedGoogle Scholar
  70. Brody EN, Mackal RP, Evans EA Jr (1967) Properties of infectious T1 deoxyribonucleic acid. J Virol 1:76–85PubMedPubMedCentralGoogle Scholar
  71. Broudy TB, Fischetti VA (2003) In vivo lysogenic conversion of Tox(-) Streptococcus pyogenes to Tox(+) with lysogenic streptococci or free phage. Infect Immun 71:3782–3786PubMedPubMedCentralCrossRefGoogle Scholar
  72. Broudy TB, Pancholi V, Fischetti VA (2002) The in vitro interaction of Streptococcus pyogenes with human pharyngeal cells induces a phage-encoded extracellular DNase. Infect Immun 70:2805–2811PubMedPubMedCentralCrossRefGoogle Scholar
  73. Bukhari AI, Zipser D (1972) Random insertion of Mu-1 DNA within a single gene. Nat New Biol 236:240–243CrossRefGoogle Scholar
  74. Busquets A, Peña A, Gomila M, Bosch R, Nogales B, García-Valdés E, Lalucat J, Bennasar A (2012) Genome sequence of Pseudomonas stutzeri strain JM300 (DSM 10701), a soil isolate and model organism for natural transformation. J Bacteriol 194:5477–5478PubMedPubMedCentralCrossRefGoogle Scholar
  75. Cagle GD, Vela GR, Pfister RM (1972) Freeze-etching of Azotobacter vinelandii: examination of wall, exine, and vesicles. J Bacteriol 109:1191–1197PubMedPubMedCentralGoogle Scholar
  76. Calef E (1967) Mapping of integration and excision crossovers in superinfection double lysogens for phage lambda in Escherichia coli. Genetics 55:547–556PubMedPubMedCentralGoogle Scholar
  77. Campbell A (1963) Segregants from lysogenic heterogenotes carrying recombinant lambda prophages. Virology 20:344–356PubMedCrossRefGoogle Scholar
  78. Campbell AM (1992) Chromosomal insertion sites for phages and plasmids. J Bacteriol 174:7495–7499PubMedPubMedCentralCrossRefGoogle Scholar
  79. Campbell A, Schneider SJ, Song B (1992) Lambdoid phages as elements of bacterial genomes (integrase/phage21/Escherichia coli K-12/icd gene). Genetica 86:259–267PubMedCrossRefGoogle Scholar
  80. Carlson CA, Pierson LS, Rosen JJ, Ingraham JL (1983) Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 153:93–99PubMedPubMedCentralGoogle Scholar
  81. Caruso ML, Fucci L (1990) Histological identification of Helicobacter pylori in early and advanced gastric cancer. J Clin Gastroenterol 12:601–602PubMedGoogle Scholar
  82. Caster JH, Postel EH, Goodgal SH (1970) Competence mutants: isolation of transformation deficient strains of Haemophilus influenzae. Nature (London) 227:515–517CrossRefGoogle Scholar
  83. Cavalli LL, Lederberg J, Lederberg EM (1953) An infective factor controlling sex compatibility in Bacterium coli. J Gen Microbiol 8:89–103PubMedGoogle Scholar
  84. Cavalli-Sforza LL (1950) La sessualita nei batteri. Boll Ist Sieroter Milan 29:281–289PubMedGoogle Scholar
  85. Chan RK, Botstein D (1976) Specialized transduction by bacteriophage P22 in Salmonella typhimurium: genetic and physical structure of the transducing genomes and the prophage attachment site. Genetics 83:433–458PubMedPubMedCentralGoogle Scholar
  86. Chandler MS (1992) The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc Natl Acad Sci USA 89:1626–1630PubMedCrossRefGoogle Scholar
  87. Chandler MS, Smith RA (1996) Characterization of the Haemophilus influenzae topA locus: DNA topoisomerase I is required for genetic competence. Gene 169:25–31PubMedCrossRefGoogle Scholar
  88. Chandry PS, Moore SC, Davidson BE, Hillier AJ (2002) Transduction of concatemeric plasmids containing cos site of Lactococcus lactis bacteriophage sk1. FEMS Microbiol Lett 216:85–90PubMedCrossRefGoogle Scholar
  89. Chang KC, Yeh YC, Lin TL, Wang JT (2001) Identification of genes associated with natural competence in Helicobacter pylori by transposon shuttle random mutagenesis. Biochem Biophys Res Commun 288:961–968PubMedCrossRefGoogle Scholar
  90. Charbit A, Gehring K, Nikaido H, Ferenci T, Hofnung M (1988) Maltose transport and starch binding in phage-resistant point mutants of maltoporin. Functional and topological implications. J Mol Biol 201:487–496PubMedCrossRefGoogle Scholar
  91. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249PubMedCrossRefGoogle Scholar
  92. Chen J, Novick RP (2009) Phage-mediated intergeneric transfer of toxin genes. Science 323:139–141PubMedCrossRefGoogle Scholar
  93. Cho H, Winans SC (2007) TraA, TraC and TraD autorepress two divergent quorum-regulated promoters near the transfer origin of the Ti plasmid of Agrobacterium tumefaciens. Mol Microbiol 63:1769–1782PubMedCrossRefGoogle Scholar
  94. Choi JW, Um JH, Cho JH, Lee HJ (2017) Tiny RNAs and their voyage via extracellular vesicles: secretion of bacterial small RNA and eukaryotic microRNA. Exp Biol Med (Maywood) 242:1475–1481CrossRefGoogle Scholar
  95. Chow LT, Boice L, Davidson N (1972) Map of the partial sequence homology between DNA molecules of Bacillus subtilis bacteriophages SPO2 and phi105. J Mol Biol 68:391–400PubMedCrossRefGoogle Scholar
  96. Christensen JR, Geiman JM (1973) A new effect of the rex gene of phage lambda: premature lysis after infection by phage T1. Virology 56:285–290PubMedCrossRefGoogle Scholar
  97. Christensen JR, Gawron MC, Halpern J (1978) Exclusion of bacteriophage T1 by bacteriophage lambda. I. Early exclusion requires lambda N gene product and host factors involved in N gene expression. J Virol 25:527–534PubMedPubMedCentralGoogle Scholar
  98. Clark AJ (1963) Genetic analysis of a “double male” strain of Escherichia coli K-12. Genetics 48:105–120PubMedPubMedCentralGoogle Scholar
  99. Clark AJ, Adelberg EA (1962) Bacterial conjugation. Annu Rev Microbiol 16:289–319PubMedCrossRefGoogle Scholar
  100. Concino MF, Goodgal SH (1981) Haemophilus influenzae polypeptides involved in deoxyribonucleic acid uptake detected by cellular surface protein iodination. J Bacteriol 148:220–231PubMedPubMedCentralGoogle Scholar
  101. Concino MF, Goodgal SH (1982) DNA-binding vesicles released from the surface of a competence-deficient mutant of Haemophilus influenzae. J Bacteriol 152:441–450PubMedPubMedCentralGoogle Scholar
  102. Corbinais C, Mathieu A, Damke PP, Kortulewski T, Busso D, Prado-Acosta M, Radicella JP, Marsin S (2017) ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci Rep 7:41495PubMedPubMedCentralCrossRefGoogle Scholar
  103. Costa TR, Ilangovan A, Ukleja M, Redzej A, Santini JM, Smith TK, Egelman EH, Waksman G (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166:1436–1444PubMedPubMedCentralCrossRefGoogle Scholar
  104. Cress DE, Kline BC (1976) Isolation and characterization of Escherichia coli chromosomal mutants affecting plasmid copy number. J Bacteriol 125:635–642PubMedPubMedCentralGoogle Scholar
  105. Croft S, Walsh J, Lloyd W, Russell-Jones GJ (1991) TraT: a powerful carrier molecule for the stimulation of immune responses to protein and peptide antigens. J Immunol 146:793–798PubMedGoogle Scholar
  106. Cuozzo M, Silverman PM (1986) Characterization of the F plasmid TraJ protein synthesized in F′ and Hfr strains of Escherichia coli K-12. J Biol Chem 261:5175–5179PubMedGoogle Scholar
  107. D’Herelle F (1917) On an invisible microbe antagonistic toward dysenteric bacilli. C R Acad Sci 165:373–375Google Scholar
  108. Danner DB, Deich RA, Sisco KL, Smith HO (1980) An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11:311–318PubMedCrossRefGoogle Scholar
  109. Danner DB, Smith HO, Narang SA (1982) Construction of DNA recognition sites active in Haemophilus transformation. Proc Natl Acad Sci USA 79:2393–2397PubMedCrossRefGoogle Scholar
  110. Davidson BE, Powell IB, Hillier AJ (1990) Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol Rev 87:79–90CrossRefGoogle Scholar
  111. Dawson MH (1928) The interconvertibility of “R” and “S” forms of pneumococcus. J Exp Med 47:577–591PubMedPubMedCentralCrossRefGoogle Scholar
  112. Dawson MH (1930) The transformation of pneumococcal types: II. The interconvertibility of type-specific S. pneumococci. J Exp Med 51:123–147PubMedPubMedCentralCrossRefGoogle Scholar
  113. de Vos WM (2011) Systems solutions by lactic acid bacteria: from paradigms to practice. Microb Cell Fact 10:S2PubMedPubMedCentralCrossRefGoogle Scholar
  114. de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195:211–215PubMedCrossRefGoogle Scholar
  115. Dean DH, Orrego JC, Hutchinson KW, Halvorson HO (1976) New temperate bacteriophage for Bacillus subtilis: Rho1 1. J Virol 29:509–519Google Scholar
  116. Deich RA, Smith HO (1980) Mechanism of homospecific DNA uptake in Haemophilus influenzae transformation. Mol Gen Genet 177:369–374PubMedCrossRefGoogle Scholar
  117. Delbrück M (1945) The burst size distribution in the growth of bacterial viruses (bacteriophages). J Bacteriol 50:131–135PubMedPubMedCentralGoogle Scholar
  118. Denney RM, Yanofsky C (1974) Isolation and characterization of specialized φ80 transducing phages carrying regions of the Salmonella typhimurium trp operon. J Bacteriol 118:505–513PubMedPubMedCentralGoogle Scholar
  119. Dennison S (1972) Naturally occurring R factor, derepressed for pilus synthesis, belonging to the same compatibility group as the sex factor F of Escherichia coli K-12. J Bacteriol 109:416–422PubMedPubMedCentralGoogle Scholar
  120. Deutsch A (1962) New fermentation reactions by Streptococcus viridans stimulated by transformation with pneumococcal deoxyribonucleic acid. Nature 194:375–376PubMedCrossRefGoogle Scholar
  121. Dick GF, Dick GH (1924) A skin test for susceptibility to scarlet fever. JAMA 82:265–266CrossRefGoogle Scholar
  122. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34PubMedPubMedCentralCrossRefGoogle Scholar
  123. Doran TJ, Loh SM, Firth N, Skurray RA (1994) Molecular analysis of the F plasmid traVR region: traV encodes a lipoprotein. J Bacteriol 176:4182–4186PubMedPubMedCentralCrossRefGoogle Scholar
  124. Dorer MS, Fero J, Salama NR (2010) DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog 6:e1001026PubMedPubMedCentralCrossRefGoogle Scholar
  125. Dorer MS, Cohen IE, Sessler TH, Fero J, Salama NR (2013) Natural competence promotes Helicobacter pylori chronic infection. Infect Immun 81:209–215PubMedPubMedCentralCrossRefGoogle Scholar
  126. Dostál L, Schildbach JF (2010) Single-stranded DNA binding by F TraI relaxase and helicase domains is coordinately regulated. J Bacteriol 192:3620–3628PubMedPubMedCentralCrossRefGoogle Scholar
  127. Drexler H (1970) Transduction by bacteriophage T1. Proc Natl Acad Sci USA 66:1083–1088PubMedCrossRefGoogle Scholar
  128. Drexler H (1977) Specialized transduction of the biotin region of Escherichia coli by phage T1. Mol Gen Genet 152:59–63PubMedCrossRefGoogle Scholar
  129. Drexler H, Christensen JR (1979) Transduction of bacteriophage lambda by bacteriophage T1. J Virol 30:543–550PubMedPubMedCentralGoogle Scholar
  130. Drexler H, Kylberg KJ (1975) Effect of UV irradiation on transduction by coliphage T1. J Virol 16:263–266PubMedPubMedCentralGoogle Scholar
  131. Dubnau DA (1982) The molecular biology of the bacilli, Bacillus subtilis, vol 1. Academic, New YorkGoogle Scholar
  132. Dubois A, Fiala N, Hemanackah LM, Drazek ES, Tarnawski A, Fishbein WN, Perez-Perez GI, Blaser MJ (1994) Natural gastric infection with Helicobacter pylori in monkeys: a model for spiral bacteria infection in humans. Gastroenterology 106:1405–1417PubMedCrossRefGoogle Scholar
  133. Duval CW, Couret M (1912) A further note upon the experimental production of leprosy in the monkey (Macacus rhesus) with a critical study of the culture employed. J Exp Med 15:292–306PubMedPubMedCentralCrossRefGoogle Scholar
  134. Dwivedi GR, Sharma E, Rao DN (2013) Helicobacter pylori DprA alleviates restriction barrier for incoming DNA. Nucleic Acids Res 41:3274–3288PubMedPubMedCentralCrossRefGoogle Scholar
  135. Dyer DW, Rock MI, Lee CY, Iandolo JJ (1985) Generation of transducing particles in Staphylococcus aureus. J Bacteriol 161:91–95PubMedPubMedCentralGoogle Scholar
  136. Enomoto M (1967) Composition of chromosome fragments participating in phage P22-mediated transduction of Salmonella typhimurium. Virology 33:474–482PubMedCrossRefGoogle Scholar
  137. Ephrussi-Taylor H, Freed BA (1964) Incorporation of thymidine and amino acids into deoxyribonucleic acid and acid-insoluble cell structures in pneumococcal cultures synchronized for competence to transform. J Bacteriol 87:1211–1215PubMedPubMedCentralGoogle Scholar
  138. Eriksson U, Svenson SB, Lönngren J, Lindberg AA (1979) Salmonella phage glycanases: substrate specificity of the phage P22 endo-rhamnosidase. J Gen Virol 43:503–551PubMedCrossRefGoogle Scholar
  139. Erni B, Zanolari B, Kocher HP (1987) The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262:5238–5247PubMedGoogle Scholar
  140. Evans AC (1936) Studies on hemolytic streptococci: II. Streptococcus pyogenes. J Bacteriol 31:611–624PubMedPubMedCentralGoogle Scholar
  141. Everett R, Willetts N (1980) Characterization of an in vivo system for nicking at the origin of conjugal DNA transfer of the sex factor F. J Mol Biol 136:129–150PubMedCrossRefGoogle Scholar
  142. Faelen M, Toussaint A (1976) Bacteriophage Mu-1: a tool to transpose and to localize bacterial genes. J Mol Biol 104:525539CrossRefGoogle Scholar
  143. Faelen M, Mergeay M, Gerits J, Toussaint A, Lefèbvre N (1981) Genetic mapping of a mutation conferring sensitivity to bacteriophage Mu in Salmonella typhimurium LT2. J Bacteriol 146:914–919PubMedPubMedCentralGoogle Scholar
  144. Falkinham JO, Clark AJ (1974) Genetic analysis of a double male strain of Escherichia coli K12. Genetics 78:633–644PubMedPubMedCentralGoogle Scholar
  145. Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG (2017) Considerations on bacterial nucleoids. Appl Microbiol Biotechnol 101:5591–5602PubMedCrossRefGoogle Scholar
  146. Feinstein SI, Low KB (1986) Hyper-recombining recipient strains in bacterial conjugation. Genetics 113:13–33PubMedPubMedCentralGoogle Scholar
  147. Feller AE, Stevens DA (1952) Sheep blood agar for the isolation of Lancefield groups of beta-hemolytic streptococci. J Lab Clin Med 39:484–491PubMedGoogle Scholar
  148. Feng Y, Chen CJ, Su LH, Hu S, Yu J, Chiu CH (2008) Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 32:23–37PubMedCrossRefGoogle Scholar
  149. Fercher C, Probst I, Kohler V, Goessweiner-Mohr N, Arends K, Grohmann E, Zangger K, Meyer NH, Keller W (2016) VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis. Sci Rep 6:24643PubMedPubMedCentralCrossRefGoogle Scholar
  150. Fernandes RM, De Lencastre H, Archer LJ (1986) Three new temperate phages of Bacillus subtilis. J Gen Microbiol 132:661–668PubMedGoogle Scholar
  151. Fernandes RM, de Lencastre H, Archer LJ (1989) Specialized transduction in Bacillus subtilis by the phages IG1, IG3, and IG4. Arch Virol 105:137–140PubMedCrossRefGoogle Scholar
  152. Fernandez-Lopez R, de Toro M, Moncalian G, Garcillan-Barcia MP, de la Cruz F (2016) Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front Mol Biosci 3:71. (eCollection 2016)PubMedPubMedCentralCrossRefGoogle Scholar
  153. Fink PS, Zahler SA (1982) Specialized transduction of the ilvD-thyB-ilvA region mediated by Bacillus subtilis bacteriophage SP beta. J Bacteriol 150:1274–1279PubMedPubMedCentralGoogle Scholar
  154. Finlay BB, Paranchych W (1986) Nucleotide sequence of the surface exclusion genes traS and traT from the IncF0 lac plasmid pED208. J Bacteriol 166:713–721PubMedPubMedCentralCrossRefGoogle Scholar
  155. Firth N, Skurray R (1992) Characterization of the F plasmid bifunctional conjugation gene, traG. Mol Gen Genet 232:145–153PubMedCrossRefGoogle Scholar
  156. Fischetti VA, Pancholi V, Schneewind O (1990) Conservation of a pentapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol 4:1603–1605PubMedCrossRefGoogle Scholar
  157. Fitzgerald GF, Gasson MJ (1988) In vivo gene transfer systems and transposons. Biochimie 70:489–502PubMedCrossRefGoogle Scholar
  158. Folli C, Mangiarotti L, Folloni S, Alfieri B, Gobbo M, Berni R, Rivetti C (2008) Specificity of the TraA-DNA interaction in the regulation of the pPD1-encoded sex pheromone response in Enterococcus faecalis. J Mol Biol 380:932–945PubMedCrossRefGoogle Scholar
  159. Fox MS (1962) The fate of transforming deoxyribonucleate following fixation by transformable bacteria III. Proc Natl Acad Sci USA 48:1043–1048PubMedCrossRefGoogle Scholar
  160. Fox MS, Allen MK (1964) On the mechanism of deoxyribonucleate integration in pneumococcal transformation. Proc Natl Acad Sci USA 52:412–419PubMedCrossRefGoogle Scholar
  161. Fox MS, Hotchkiss RD (1960) Fate of transforming deoxyribonucleate following fixation by transformable bacteria. Nature 187:1002–1006PubMedCrossRefGoogle Scholar
  162. Franklin N (1971) In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Laboratory, New York, pp 175–194Google Scholar
  163. Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688PubMedPubMedCentralGoogle Scholar
  164. Freeman VJ, Morse IU (1952) Further observations on the change to virulence of bacteriophage infected avirulent strains of Corynebacterium diphtheriae. J Bacteriol 63:407–414PubMedPubMedCentralGoogle Scholar
  165. Friesen JD, Parker J, Watson RJ, Fiil NP, Pedersen S (1976) Isolation of transducing phage carrying rps T, the structural gene for ribosomal protein S20. Mol Gen Genet 144:115–118PubMedCrossRefGoogle Scholar
  166. Frobisher M Jr, Brown JH (1927) Transmissible toxicogenicity of streptococci. Bull Johns Hopkins Hosp 41:167–173Google Scholar
  167. Frost LS, Paranchych W, Willetts NS (1984) DNA sequence of the F traALE region that includes the gene for F pilin. J Bacteriol 160:395–401PubMedPubMedCentralGoogle Scholar
  168. Frost LA, Ippen-IhleK, Skurray RA (1994) Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58:162–210PubMedPubMedCentralGoogle Scholar
  169. Fuerst JA (2005) Intracellular compartmentation in Planctomycetes. Annu Rev Microbiol 59:299–328PubMedCrossRefGoogle Scholar
  170. Garcia E, Lopez P, Ureña MT, Espinosa M (1978) Early stages in Bacillus subtilis transformation: association between homologous DNA and surface structures. J Bacteriol 135:731–740PubMedPubMedCentralGoogle Scholar
  171. Ghei OK, Lacks SA (1967) Recovery of donor deoxyribonucleic acid marker activity from eclipse in pneumococcal transformation. J Bacteriol 93:816–829PubMedPubMedCentralGoogle Scholar
  172. Goodgal SH (1961) Studies on transformations of Hemophilus influenzae. IV. Linked and unlinked transformations. J Gen Physiol 45:205–228PubMedPubMedCentralCrossRefGoogle Scholar
  173. Goodgal SH, Herriott RM (1961a) Studies on transformations of Hemophilus influenzae. I Competence. J Gen Physiol 44:1201–1227PubMedPubMedCentralCrossRefGoogle Scholar
  174. Goodgal SH, Herriott RM (1961b) Studies on transformations of Hemophilus influenzae. II. The molecular weight of transforming DNA by sedimentation and diffusion measurements. J Gen Physiol 44:1229–1239PubMedPubMedCentralCrossRefGoogle Scholar
  175. Goodgal SH, Mitchell M (1984) Uptake of heterologous DNA by Haemophilus influenzae. J Bacteriol 157:785–788PubMedPubMedCentralGoogle Scholar
  176. Gowen JW, Lincoln RE (1942) A test for sexual fusion in bacteria. J Bacteriol 44:551–554PubMedPubMedCentralGoogle Scholar
  177. Grace ED, Gopalkrishnan S, Girard ME, Blankschien MD, Ross W, Gourse RL, Herman C (2015) Activation of the σE-dependent stress pathway by conjugative TraR may anticipate conjugational stress. J Bacteriol 197:924–931PubMedPubMedCentralCrossRefGoogle Scholar
  178. Graupner S, Wackernagel W (2001) Identification and characterization of novel competence genes comA and exbB involved in natural genetic transformation of Pseudomonas stutzeri. Res Microbiol 152:451–460PubMedCrossRefGoogle Scholar
  179. Graupner S, Frey V, Hashemi R, Lorenz MG, Brandes G, Wackernagel W (2000) Type IV pilus genes pilA and pilC of Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by corresponding genes from nontransformable species. J Bacteriol 182:2184–2190PubMedPubMedCentralCrossRefGoogle Scholar
  180. Graupner S, Weger N, Sohni M, Wackernagel W (2001) Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI. J Bacteriol 183:4694–4701PubMedPubMedCentralCrossRefGoogle Scholar
  181. Graves JF, Biswas GD, Sparling PF (1982) Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J Bacteriol 152:1071–1077PubMedPubMedCentralGoogle Scholar
  182. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159CrossRefGoogle Scholar
  183. Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301PubMedPubMedCentralCrossRefGoogle Scholar
  184. Gromkova R, Goodgal SH (1972) Action of Haemophilus endodeoxyribonuclease on biologically active deoxyribonucleic acid. J Bacteriol 109:987–992PubMedPubMedCentralGoogle Scholar
  185. Gubbins MJ, Lau I, Will WR, Manchak JM, Raivio TL, Frost LS (2002) The positive regulator, TraJ, of the Escherichia coli F plasmid is unstable in a cpxA background. J Bacteriol 184:5781–5788PubMedPubMedCentralCrossRefGoogle Scholar
  186. Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EP (2011) The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 7:e1002222PubMedPubMedCentralCrossRefGoogle Scholar
  187. Guild WR, Robinson M (1963) Evidence for message reading from a unique strand of pneumococcal DNA. Proc Natl Acad Sci USA 50:106–112PubMedCrossRefGoogle Scholar
  188. Gunther JK, Goodgal SH (1970) An exonuclease specific for double stranded deoxyribonucleic acid. J Biol Chem 245:5341–5349PubMedGoogle Scholar
  189. Guogas LM, Kennedy SA, Lee JH, Redinbo MR (2009) A novel fold in the TraI relaxase-helicase C-terminal domain is essential for conjugative DNA transfer. J Mol Biol 386:554–568PubMedCrossRefGoogle Scholar
  190. Gurney T, Fox MS (1968) Physical and genetic hybrids formed in bacterial transformation. J Mol Biol 32:83–100PubMedCrossRefGoogle Scholar
  191. Gwinn ML, Ramanathan R, Smith HO, Tomb JF (1998) A new transformation-deficient mutant of Haemophilus influenzae Rd with normal DNA uptake. J Bacteriol 180:746–748PubMedPubMedCentralGoogle Scholar
  192. Habier J, May P, Heintz-Buschart A, Ghosal A, Wienecke-Baldacchino AK, Nolte-’t Hoen ENM, Wilmes P, Fritz JV (2018) Extraction and analysis of RNA isolated from pure bacteria-derived outer membrane vesicles. Methods Mol Biol 1737:213–230PubMedCrossRefGoogle Scholar
  193. Ham LM, Firth N, Skurray R (1989) Nucleotide sequence of the F plasmid transfer gene, traH: identification of a new gene and a promoter within the transfer operon. Gene 75:157–165PubMedCrossRefGoogle Scholar
  194. Hansen FG, von Meyenburg K (1979) Characterization of the dnaA, gyrB and other genes in the dnaA region of the Escherichia coli chromosome on specialized transducing phages lambda-tna. Mol Gen Genet 175:135–144PubMedCrossRefGoogle Scholar
  195. Hansen FG, Nielsen J, Riise E, von Meyenburg K (1981) The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli. Mol Gen Genet 183:463–472PubMedCrossRefGoogle Scholar
  196. Harada K, Kameda M, Suzuki M, Mitsuhashi S (1963) Drug resistance of enteric bacteria. II. Transduction of transmissible drug-resistance (R) factors with phage epsilon. J Bacteriol 86:1332–1338PubMedPubMedCentralGoogle Scholar
  197. Harada K, Kameda M, Suzuki M, Mitsuhashi S (1964) Drug resistance of enteric bacteria. 3. Acquisition of transferability of nontransmissible R(TC) factor in cooperation with F factor and formation of FR(TC). J Bacteriol 88:1257–1265PubMedPubMedCentralGoogle Scholar
  198. Harris RL, Silverman PM (2004) Tra proteins characteristic of F-like type IV secretion systems constitute an interaction group by yeast two-hybrid analysis. J Bacteriol 186:5480–5485PubMedPubMedCentralCrossRefGoogle Scholar
  199. Hashimoto K (1957) Further studies on the transformation of streptomycin resistance in pneumococci. Jpn J Microbiol 1:1–9PubMedCrossRefGoogle Scholar
  200. Havekes LM, Lugtenberg BJ, Hoekstra WP (1976) Conjugation deficient E. coli K12 F- mutants with heptose-less lipopolysaccharide. Mol Gen Genet 146:43–50PubMedCrossRefGoogle Scholar
  201. Hayes W (1953a) The mechanism of genetic recombination in Escherichia coli. Cold Spring Harb Symp Quant Biol 18:75–93PubMedCrossRefGoogle Scholar
  202. Hayes W (1953b) Observations on a transmissible agent determining sexual differentiation in Bacterium coli. J Gen Microbiol 8:72–88PubMedGoogle Scholar
  203. Hedges RW (1971) Transduction mechanisms of bacteriophage ε15 I. General properties of the system. Genet Res 18:9–19PubMedCrossRefGoogle Scholar
  204. Hedges AJ (1974) R factors from Proteus mirabilis and P. vulgaris. J Gen Microbiol 87:301–311CrossRefGoogle Scholar
  205. Heidelberger M, Avery OT (1923) The soluble specific substance of pneumococcus. J Exp Med 38:73–79PubMedPubMedCentralCrossRefGoogle Scholar
  206. Hellstern S, Mutzel R (2016) Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose. Protein Expr Purif 122:97–104PubMedCrossRefGoogle Scholar
  207. Hemmis CW, Berkmen M, Eser M, Schildbach JF (2011) TrbB from conjugative plasmid F is a structurally distinct disulfide isomerase that requires DsbD for redox state maintenance. J Bacteriol 193:4588–4597PubMedPubMedCentralCrossRefGoogle Scholar
  208. Hemmis CW, Wright NT, Majumdar A, Schildbach JF (2014) Chemical shift assignments of a reduced N-terminal truncation mutant of the disulfide bond isomerase TrbB from plasmid F, TrbBΔ29. Biomol NMR Assign 8:435–438PubMedPubMedCentralCrossRefGoogle Scholar
  209. Hennecke H, Springer M, Böck A (1977) A specialized transducing lambda phage carrying the Escherichia coli genes for phenylalanyl-tRNA synthetase. Mol Gen Genet 152:205–210PubMedCrossRefGoogle Scholar
  210. Herriott RM, Meyer EM, Vogt M (1970) Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol 101:517–524PubMedPubMedCentralGoogle Scholar
  211. Hill JE, Wannamaker LW (1981) Identification of a lysin associated with a bacteriophage (A25) virulent for group A streptococci. J Bacteriol 145:696–703PubMedPubMedCentralGoogle Scholar
  212. Hiraga S (1976) Novel F prime factors able to replicate in Escherichia coli Hfr strains. Proc Natl Acad Sci USA 73:198–202PubMedCrossRefGoogle Scholar
  213. Hiraga S, Saitoh T (1975) F deoxyribonucleic acid transferred to recipient cells in the presence of rifampin. J Bacteriol 121:1000–1006PubMedPubMedCentralGoogle Scholar
  214. Hirota Y (1956) Artificial elimination of the F factor in Bact. coli K-12. Nature 178:92PubMedCrossRefGoogle Scholar
  215. Hirota Y, Lijima T (1957) Acriflavine as an effective agent for eliminating F-factor in Escherichia coli K-12. Nature 180:655–656PubMedCrossRefGoogle Scholar
  216. Hodgson DA (2000) Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35:312–323PubMedCrossRefGoogle Scholar
  217. Hofreuter D, Odenbreit S, Henke G, Haas R (1998) Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol Microbiol 28:1027–1038CrossRefGoogle Scholar
  218. Hofreuter D, Odenbreit S, Haas R (2001) Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41:379–391PubMedPubMedCentralCrossRefGoogle Scholar
  219. Hofreuter D, Karnholz A, Haas R (2003) Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int J Med Microbiol 293:153–165PubMedCrossRefGoogle Scholar
  220. Holden MT, Heather Z, Paillot R, Steward KF, Webb K, Ainslie F, Jourdan T, Bason NC, Holroyd NE, Mungall K, Quail MA, Sanders M, Simmonds M, Willey D, Brooks K, Aanensen DM, Spratt BG, Jolley KA, Maiden MC, Kehoe M, Chanter N, Bentley SD, Robinson C, Maskell DJ, Parkhill J, Waller AS (2009) Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 5:e1000346PubMedPubMedCentralCrossRefGoogle Scholar
  221. Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581PubMedGoogle Scholar
  222. Holloway BW (1956) Self-fertility in Pseudomonas aeruginosa. J Gen Microbiol 15:221–224PubMedCrossRefGoogle Scholar
  223. Holloway BW, Fargie B (1960) Fertility factors and genetic linkage in Pseudomonas aeruginosa. J Bacteriol 80:362–368PubMedPubMedCentralGoogle Scholar
  224. Holloway BW, Jennings PA (1958) An infectious fertility factor for Pseudomonas aeruginosa. Nature 181:855–856PubMedCrossRefGoogle Scholar
  225. Hui FM, Zhou L, Morrison DA (1995) Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153:25–31PubMedCrossRefGoogle Scholar
  226. Humbert O, Dorer MS, Salama NR (2011) Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. Mol Microbiol 79:387–401PubMedCrossRefGoogle Scholar
  227. Hyder SL, Streitfeld M (1978) Transfer of erythromycin resistance from clinically isolated lysogenic strains of Streptococcus pyogenes via their endogenous phage. J Infect Dis 138:281–286PubMedCrossRefGoogle Scholar
  228. Ikeda H, Tomizawa J (1968) Prophage P1, and extrachromosomal replication unit. Cold Spring Harb Symp Quant Biol 33:791–798PubMedCrossRefGoogle Scholar
  229. Ikeuchi T, Kudoh J, Kurahashi K (1985) Genetic analysis of spo0A and spo0C mutants of Bacillus subtilis with a phi 105 prophage merodiploid system. J Bacteriol 163(2):411–416PubMedPubMedCentralGoogle Scholar
  230. Ilangovan A, Kay CWM, Roier S, El Mkami H, Salvadori E, Zechner EL, Zanetti G, Waksman G (2017) Cryo-EM Structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169:708–721PubMedPubMedCentralCrossRefGoogle Scholar
  231. Inoko H, Imai M (1976) Isolation and genetic characterization of the nitA mutants of Escherichia coli affecting the termination factor rho. Mol Gen Genet 143:211–221PubMedCrossRefGoogle Scholar
  232. Inselburg JW, Eremenko-volpe T, Greenwald L, Maedow WL, Marmur J (1969) Physical and genetic mapping of the SP02 prophage on the chromosome of Bacillus subtilis 168. J Virol 3:624–628Google Scholar
  233. Jacob F, Wollman EL (1956) Processes of conjugation and recombination in Escherichia coli. I. Induction by conjugation or zygotic induction. Ann Inst Pasteur 91:486–510Google Scholar
  234. Jacob F, Wollman EL (1958a) Process of conjugation & genetic recombination in Escherichia coli. IV. Inducible prophages & measurement of the genetic segments transferred during conjugation. Ann Inst Pasteur 95:497–519Google Scholar
  235. Jacob F, Wollman EL (1958b) Episomes, a proposed term for added genetic elements. C R Hebd Seances Acad Sci 247:154–156PubMedGoogle Scholar
  236. Jacob F, Wollman EL (1961) Sexuality and the genetics of bacteria. Academic, New YorkGoogle Scholar
  237. Jalajakumari MB, Manning PA (1989) Nucleotide sequence of the traD region in the Escherichia coli F sex factor. Gene 81:195–202PubMedCrossRefGoogle Scholar
  238. Jarolmen H, Bondi A, Crowell RL (1965) Transduction of Staphylococcus aureus to tetracycline resistance in vivo. J Bacteriol 89:1286–1290PubMedPubMedCentralGoogle Scholar
  239. Jerome LJ, van Biesen T, Frost LS (1999) Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E. J Mol Biol 285:1457–1473PubMedCrossRefGoogle Scholar
  240. Jha C, Ghosh S, Gautam V, Malhotra P, Ray P (2017) In vitro study of virulence potential of Acinetobacter baumannii outer membrane vesicles. Microb Pathog 111:218–224PubMedCrossRefGoogle Scholar
  241. Johnson EM, Falkow S, Baron LS (1964) Chromosome transfer kinetics of Salmonella Hfr strains. J Bacteriol 88:395–400PubMedPubMedCentralGoogle Scholar
  242. Johnson JR, Greene RC, Krueger JH (1977) Isolation and characterization of specialized lambda transducing bacteriophage carrying the metBJF methionine gene cluster. J Bacteriol 131:795–800PubMedPubMedCentralGoogle Scholar
  243. Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K, Munoz-Aguayo J, Flores-Figueroa C, Aziz M, Stoesser N, Sokurenko E, Price LB, Johnson JR (2016) Separate F-type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence type 131. mSphere 1(4):e00121–e00116PubMedPubMedCentralCrossRefGoogle Scholar
  244. Johnston C, Martin B, Granadel C, Polard P, Claverys JP (2013) Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation. PLoS Pathog 9:e1003178PubMedPubMedCentralCrossRefGoogle Scholar
  245. Jones KE, Wetzler TF, Kenny GE (1981) T1 bacteriophage as an indicator for decontamination of laminar-flow biological safety cabinets. Appl Environ Microbiol 41:1072–1073PubMedPubMedCentralGoogle Scholar
  246. Kahn M, Concino M, Gromkova R, Goodgal S (1979) DNA binding activity of vesicles produced by competence deficient mutants of Haemophilus. Biochem Biophys Res Commun 87:764–772PubMedCrossRefGoogle Scholar
  247. Kahn ME, Maul G, Goodgal SH (1982) Possible mechanism for donor DNA binding and transport in Haemophilus. Proc Natl Acad Sci USA 79:6370–6374PubMedCrossRefGoogle Scholar
  248. Kahn ME, Barany F, Smith HO (1983) Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proc Natl Acad Sci USA 80:6927–6931PubMedCrossRefGoogle Scholar
  249. Kameda M, Harada K, Suzuki M, Mitsuhashi S (1965) Drug resistance of enteric bacteria. V. High frequency of transduction of R factors with bacteriophage epsilon. J Bacteriol 90:1174–1181PubMedPubMedCentralGoogle Scholar
  250. Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 215:57–67PubMedCrossRefGoogle Scholar
  251. Kanemoto K, Tanaka S, Miyashita T, Matsushiro A (1986) Identification and purification of the N gene product of bacteriophage φ 80. Mol Gen Genet 205:523–529PubMedCrossRefGoogle Scholar
  252. Karudapuram S, Barcak GJ (1997) The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol 179:4815–4820PubMedPubMedCentralCrossRefGoogle Scholar
  253. Karudapuram S, Zhao X, Barcak GJ (1995) DNA sequence and characterization of Haemophilus influenzae dprA+, a gene required for chromosomal but not plasmid DNA transformation. J Bacteriol 177:3235–3240PubMedPubMedCentralCrossRefGoogle Scholar
  254. Kashiwagi A, Kitamura H, Sano Tsushima F (2015) Characterization of a single mutation in TraQ in a strain of Escherichia coli partially resistant to Qβ infection. Front Microbiol 6:124PubMedPubMedCentralCrossRefGoogle Scholar
  255. Kathir P, Ippen-Ihler K (1991) Construction and characterization of derivatives carrying insertion mutations in F plasmid transfer region genes, trbA, artA, traQ, and trbB. Plasmid 26:40–54PubMedCrossRefGoogle Scholar
  256. Kauffmann F (1953) On the transduction of serological properties in the Salmonella group. Acta Pathol Microbiol Scand 33:409–420PubMedCrossRefGoogle Scholar
  257. Kawamura F, Saito H, Ikeda Y (1979) A method for construction of specialized transducing phage rho 11 of Bacillus subtilis. Gene 5:87–91PubMedCrossRefGoogle Scholar
  258. Kehoe M, Timmis KN (1984) Cloning and expression in Escherichia coli of the streptolysin O determinant from Streptococcus pyogenes: characterization of the cloned streptolysin O determinant and demonstration of the absence of substantial homology with determinants of other thiol-activated toxins. Infect Immun 43:804–810PubMedPubMedCentralGoogle Scholar
  259. Keweloh H, Bakker EP (1984) Permeability changes in the cytoplasmic membrane of Escherichia coli K-12 early after infection with bacteriophage T1. J Bacteriol 160:347–353PubMedPubMedCentralGoogle Scholar
  260. Khan NC, Sen SP (1967) Genetic transformation in Pseudomonas. J Gen Microbiol 49:201–209PubMedCrossRefGoogle Scholar
  261. Khan NC, Sen SP (1974) Further observations on genetic transformation in Pseudomonas. Microbiology 83:251–259Google Scholar
  262. Kirschbaum JB (1973) Regulation of subunit synthesis of Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 70:2651–2655PubMedCrossRefGoogle Scholar
  263. Klaenhammer TR, McKay LL (1976) Isolation and examination of transducing bacteriophage particles from Streptococcus lactis C2. J Dairy Sci 59:396–404PubMedCrossRefGoogle Scholar
  264. Klimke WA, Frost LS (1998) Genetic analysis of the role of the transfer gene, traN, of the F and R100-1 plasmids in mating pair stabilization during conjugation. J Bacteriol 180:4036–4043PubMedPubMedCentralGoogle Scholar
  265. Kline BC, Miller JR (1975) Detection of nonintegrated plasmid deoxyribonucleic acid in the folded chromosome of Escherichia coli: physicochemical approach to studying the unit of segregation. J Bacteriol 121:165–172PubMedPubMedCentralGoogle Scholar
  266. Klumpp J, Loessner MJ (2013) Listeria phages. Genomes, evolution, and application. Bacteriophage 3:e26861PubMedPubMedCentralCrossRefGoogle Scholar
  267. Kolling GL, Matthews KR (1999) Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl Environ Microbiol 65:1843–1848PubMedPubMedCentralGoogle Scholar
  268. Konícek J, Konícková-Radochová M (1975) Possibilities of the conjugation process in mycobacteria. Folia Microbiol (Praha) 20:382–388CrossRefGoogle Scholar
  269. Krause RM (1957) Studies on bacteriophages of hemolytic streptococci. I. Factors influencing the interaction of phage and susceptible host cell. J Exp Med 106:356–384CrossRefGoogle Scholar
  270. Krause RM (2002) A half-century of streptococcal research: then & now. Indian J Med Res 115:215–241PubMedGoogle Scholar
  271. Kroll JS, Loynds BM, Langford PR (1992) Palindromic Haemophilus DNA uptake sequences in presumed transcriptional terminators from H. influenzae and H. parainfluenzae. Gene 114:151–152PubMedCrossRefGoogle Scholar
  272. Kroll JS, Wilks KE, Farrant JL, Langford PR (1998) Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci USA 95:12381–12385PubMedCrossRefGoogle Scholar
  273. Kuipers EJ, Israel DA, Kusters JG, Blaser MJ (1998) Evidence for a conjugation-like mechanism of DNA transfer in Helicobacter pylori. J Bacteriol 180:2901–2905PubMedPubMedCentralGoogle Scholar
  274. Kurenbach B, Kopeć J, Mägdefrau M, Andreas K, Keller W, Bohn C, Abajy MY, Grohmann E (2006) The TraA relaxase autoregulates the putative type IV secretion-like system encoded by the broad-host-range Streptococcus agalactiae plasmid pIP501. Microbiology 152:637–645PubMedCrossRefGoogle Scholar
  275. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490PubMedPubMedCentralCrossRefGoogle Scholar
  276. Kuwabara S, Akiba T, Koyama K, Arai T (1963) Transmission of multiple drug-resistance from Shigella flexneri to Vibrio comma through conjugation. Jpn J Microbiol 7:61–67PubMedCrossRefGoogle Scholar
  277. Kylberg KJ, Bendig MM, Drexler H (1975) Characterization of transduction by bacteriophage T1: time of production and density of transducing particles. J Virol 16:854–858PubMedPubMedCentralGoogle Scholar
  278. Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327PubMedCrossRefGoogle Scholar
  279. Lacks S (1962) Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol 5:119–131PubMedCrossRefGoogle Scholar
  280. Lacks S, Hotchkiss RD (1960) Formation of amylomaltase after genetic transformation of pneumococcus. Biochim Biophys Acta 45:155–163PubMedCrossRefGoogle Scholar
  281. Lacks S, Greenberg B, Carlson K (1967) Fate of donor DNA in pneumococcal transformation. J Mol Biol 29:327–347CrossRefGoogle Scholar
  282. Lacks S, Greenberg B, Neuberger M (1975) Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae. J Bacteriol 123:222–232PubMedPubMedCentralGoogle Scholar
  283. Lagoni OR, von Meyenburg K, Michelsen O (1993) Limited differential mRNA inactivation in the atp (unc) operon of Escherichia coli. J Bacteriol 175:5791–5797PubMedPubMedCentralCrossRefGoogle Scholar
  284. Laine S, Moore D, Kathir P, Ippen-Ihler K (1985) Genes and gene products involved in the synthesis of F-pili. Basic Life Sci 30:535–553PubMedGoogle Scholar
  285. Larson TG, Goodgal SH (1991) Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae. J Bacteriol 173:4683–4691PubMedPubMedCentralCrossRefGoogle Scholar
  286. Larson TG, Goodgal SH (1992) Donor DNA processing is blocked by a mutation in the com101A locus of Haemophilus influenzae. J Bacteriol 174:3392–3394PubMedPubMedCentralCrossRefGoogle Scholar
  287. Lawn AM, Meynell E (1970) Serotypes of sex pili. J Hyg (Camb) 68:683–694PubMedCentralPubMedGoogle Scholar
  288. Le Minor L (1965) Antigenic conversions in Salmonella. V. Acquisition of factors 15 and 34 by Salmonella of D2 subgroup under the influence of lysogenization by epsilon 15 and epsilon 34 phages. Ann Inst Pasteur 109:35–46Google Scholar
  289. LeClerc JE, Setlow JK (1975) Single-strand regions in the deoxyribonucleic acid of competent Haemophilus influenzae. J Bacteriol 122:1091–1102PubMedPubMedCentralGoogle Scholar
  290. Lederberg E (1950) Lysogenicity in Escherichia coli strain K-12. Microb Genet Bull 1:5–8Google Scholar
  291. Lederberg EM (1952) Allelic relationships and reverse mutation in Escherichia coli. Genetics 37:469–483PubMedPubMedCentralGoogle Scholar
  292. Lederberg J, Tatum EL (1946) Gene recombination in E. coli. Nature 158:558PubMedCrossRefGoogle Scholar
  293. Lederberg J, Zinder N (1948) Concentration of biochemical mutants of bacteria with penicillin. J Am Chem Soc 70:4267PubMedCrossRefGoogle Scholar
  294. Lederberg J, Lederberg EM, Zinder ND, Lively ER (1951) Recombination analysis of bacterial heredity. Cold Spring Harb Symp Quant Biol 16:413–443PubMedCrossRefGoogle Scholar
  295. Lederberg J, Cavalli LL, Lederberg EM (1952) Sex compatibility in Escherichia coli. Genetics 37:720–730PubMedPubMedCentralGoogle Scholar
  296. Lefebvre FA, Lécuyer E (2017) Small luggage for a long journey: transfer of vesicle-enclosed small RNA in interspecies communication. Front Microbiol 8:377PubMedPubMedCentralCrossRefGoogle Scholar
  297. Leidy G, Hahn E, Alexander HE (1959) Interspecific transformation in Hemophilus: a possible index of relationship between H. influenzae and H. aegyptius. Proc Soc Exp Biol Med 102:86–88PubMedCrossRefGoogle Scholar
  298. Leonard CG, Colón AE, Cole RM (1968) Transduction in group A streptococcus. Biochem Biophys Res Commun 30:130–135PubMedCrossRefGoogle Scholar
  299. Leong JM, Nunes-Düby S, Lesser CF, Youderian P, Susskind MM, Landy A (1985) The phi 80 and P22 attachment sites. Primary structure and interaction with Escherichia coli integration host factor. J Biol Chem 260:4468–4477PubMedGoogle Scholar
  300. Leverentz B, Conway WS, Janisiewicz W, Camp MJ (2004) Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot 67:1682–1686PubMedCrossRefGoogle Scholar
  301. Lewis EB (1951) Pseudoallelism and gene evolution. Cold Spring Harb Symp Quant Biol 16:159–174PubMedCrossRefGoogle Scholar
  302. Li PL, Hwang I, Miyagi H, True H, Farrand SK (1999) Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181:5033–5041PubMedPubMedCentralGoogle Scholar
  303. Lillehaug D, Lindqvist BH, Birkeland NK (1991) Characterization of +LC3, a Lactococcus lactis subsp. cremoris temperate bacteriophage with cohesive single-stranded DNA ends. Appl Environ Microbiol 57:3206–3211PubMedPubMedCentralGoogle Scholar
  304. Loessner MJ, Inman RB, Lauer P, Calendar R (2000) Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol 35:324–340PubMedCrossRefGoogle Scholar
  305. Londoño-Vallejo JA, Dubnau (1993) comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 9:119–131PubMedCrossRefGoogle Scholar
  306. Lopez P, Perez Ureña MT, Garcia E, Espinosa M (1980) Interactions of homologous and heterologous deoxyribonucleic acids and competent Bacillus subtilis cells. J Bacteriol 142:229–235PubMedPubMedCentralGoogle Scholar
  307. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602PubMedPubMedCentralGoogle Scholar
  308. Losick R, Robbins PW (1967) Mechanism of epsilon-15 conversion studies with a bacterial mutant. J Mol Biol 30:445–455PubMedCrossRefGoogle Scholar
  309. Low KB (1972) Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev 36:587–607PubMedPubMedCentralGoogle Scholar
  310. Lu J, Frost LS (2005) Mutations in the C-terminal region of TraM provide evidence for in vivo TraM-TraD interactions during F-plasmid conjugation. J Bacteriol 187:4767–4773PubMedPubMedCentralCrossRefGoogle Scholar
  311. Lu J, Wong JJ, Edwards RA, Manchak J, Frost LS, Glover JN (2008) Structural basis of specific TraD-TraM recognition during F plasmid-mediated bacterial conjugation. Mol Microbiol 70:89–99PubMedCrossRefGoogle Scholar
  312. Lu J, Peng Y, Arutyunov D, Frost LS, Glover JN (2012) Error-prone PCR mutagenesis reveals functional domains of a bacterial transcriptional activator, TraJ. J Bacteriol 194:3670–3677PubMedPubMedCentralCrossRefGoogle Scholar
  313. Luchansky JB, Kleeman EG, Raya RR, Klaenhammer TR (1989) Genetic transfer systems for delivery of plasmid deoxyribonucleic acid to Lactobacillus acidophilus ADH: conjugation, electroporation, and transduction. J Dairy Sci 72:1408–1417PubMedCrossRefGoogle Scholar
  314. Lum PL, Rodgers ME, Schildbach JF (2002) TraY DNA recognition of its two F factor binding sites. J Mol Biol 321:563–578PubMedCrossRefGoogle Scholar
  315. Lundrigan MD, Lancaster JH, Earhart CF (1983) UC-1, a new bacteriophage that uses the tonA polypeptide as its receptor. J Virol 45:700–707PubMedPubMedCentralGoogle Scholar
  316. Lyras D, Chan AW, McFarlane J, Stanisich VA (1994) The surface exclusion system of RP1: investigation of the roles of trbJ and trbK in the surface exclusion, transfer, and slow-growth phenotypes. Plasmid 32:254–261PubMedCrossRefGoogle Scholar
  317. Ma C, Redfield RJ (2000) Point mutations in a peptidoglycan biosynthesis gene cause competence induction in Haemophilus influenzae. J Bacteriol 182:3323–3330PubMedPubMedCentralCrossRefGoogle Scholar
  318. Ma XX, Ito T, Kondo Y, Cho M, Yoshizawa Y, Kaneko J, Katai A, Higashiide M, Li S, Hiramatsu K (2008) Two different Panton-Valentine leukocidin phage lineages predominate in Japan. J Clin Microbiol 46:3246–3258PubMedPubMedCentralCrossRefGoogle Scholar
  319. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354PubMedPubMedCentralCrossRefGoogle Scholar
  320. Macleod CM, Krauss MR (1947) Stepwise intratype transformation of Pneumococcus from R to S by way of a variant intermediate in capsular polysaccharide production. J Exp Med 86:439–452PubMedPubMedCentralCrossRefGoogle Scholar
  321. MacNeil D, Howe MM, Brill WJ (1980) Isolation and characterization of lambda specialized transducing bacteriophages carrying Klebsiella pneumoniae nif genes. J Bacteriol 141:1264–1271PubMedPubMedCentralGoogle Scholar
  322. Male CJ, Christensen JR (1970) Synthesis of messenger ribonucleic acid after bacteriophage T1 infection. J Virol 6:727–737PubMedPubMedCentralGoogle Scholar
  323. Malke H (1969) Transduction of Streptococcus pyogenes K 56 by temperature-sensitive mutants of the transducing phage A 25. Z Naturforsch B 24:1556–1561PubMedCrossRefGoogle Scholar
  324. Malke H (1970) Resistance pattern and genetics of erythromycin-resistant mutants of Streptococcus pyogenes. J Gen Microbiol 64:353–363PubMedCrossRefGoogle Scholar
  325. Malke H (1972) Transductional analysis of resistance to lincomycin and erythromycin in Streptococcus pyogenes. Z Allg Mikrobiol 12:469–478PubMedCrossRefGoogle Scholar
  326. Maneewannakul K, Ippen-Ihler K (1993) Construction and analysis of F plasmid traR, trbJ, and trbH mutants. J Bacteriol 175:1528–1531PubMedPubMedCentralCrossRefGoogle Scholar
  327. Maneewannakul S, Kathir P, Moore D, Le LA, Wu JH, Ippen-Ihler K (1987) Location of F plasmid transfer operon genes traC and traW and identification of the traW product. J Bacteriol 169:5119–5124PubMedPubMedCentralCrossRefGoogle Scholar
  328. Maneewannakul S, Maneewannakul K, Ippen-Ihler K (1991) Characterization of trbC, a new F plasmid tra operon gene that is essential to conjugative transfer. J Bacteriol 173:3872–3878PubMedPubMedCentralCrossRefGoogle Scholar
  329. Maneewannakul S, Kathir P, Ippen-Ihler K (1992a) Characterization of the F plasmid mating aggregation gene traN and of the new F transfer region locus trbE. J Mol Biol 225:299–311PubMedCrossRefGoogle Scholar
  330. Maneewannakul S, Maneewannakul K, Ippen-Ihler K (1992b) Characterization, localization, and sequence of F transfer region products: the pilus assembly gene product, TraW, and a new product, TrbI. J Bacteriol 174:5567–5574PubMedPubMedCentralCrossRefGoogle Scholar
  331. Maneewannakul K, Maneewannakul S, Ippen-Ihler K (1993) Synthesis of F pilin. J Bacteriol 175:1384–1391PubMedPubMedCentralCrossRefGoogle Scholar
  332. Maneewannakul K, Maneewannakul S, Ippen-Ihler K (1995) Characterization of traX, the F plasmid locus required for acetylation of F-pilin subunits. J Bacteriol 177:2957–2964PubMedPubMedCentralCrossRefGoogle Scholar
  333. Manning PA, Beutin L, Achtman M (1980) Outer membrane of Escherichia coli: properties of the F sex factor traT protein which is involved in surface exclusion. J Bacteriol 142:285–294PubMedPubMedCentralGoogle Scholar
  334. Manning PA, Morelli G, Achtman M (1981) TraG protein of the F sex factor of Escherichia coli K-12 and its role in conjugation. Proc Natl Acad Sci USA 78:7487–7491PubMedCrossRefGoogle Scholar
  335. Mark Glover JN, Chaulk SG, Edwards RA, Arthur D, Lu J, Frost LS (2015) The FinO family of bacterial RNA chaperones. Plasmid 78:79–87PubMedCrossRefGoogle Scholar
  336. Marks LR, Mashburn-Warren L, Federle MJ, Hakansson AP (2014) Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. J Infect Dis 210:25–34PubMedPubMedCentralCrossRefGoogle Scholar
  337. Marrero R, Chiafari FA, Lovett PS (1981) High-frequency elimination of SP02 prophage from Bacillus subtilis by plasmid transformation. J Virol 39:318–320PubMedPubMedCentralGoogle Scholar
  338. Marrero R, Young FE, Yasbin RE (1984) Characterization of interspecific plasmid transfer mediated by Bacillus subtilis temperate bacteriophage SP02. J Bacteriol 160:458–461PubMedPubMedCentralGoogle Scholar
  339. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315PubMedCrossRefGoogle Scholar
  340. Mathis LS, Scocca JJ (1982) Haemophilus influenzae and Neisseria gonorrhoeae recognize different specificity determinants in the DNA uptake step of genetic transformation. J Gen Microbiol 128:1159–1161PubMedGoogle Scholar
  341. Matsushiro A (1963) Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage phi-80. Virology 19:475–482PubMedCrossRefGoogle Scholar
  342. Maxted WR (1952) Enhancement of streptococcal bacteriophage lysis by hyaluronidase. Nature 170:1020–1021PubMedCrossRefGoogle Scholar
  343. McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558PubMedPubMedCentralCrossRefGoogle Scholar
  344. McCarthy D, Kupfer DM (1987) Electron microscopy of single-stranded structures in the DNA of competent Haemophilus influenzae cells. J Bacteriol 169:565–571PubMedPubMedCentralCrossRefGoogle Scholar
  345. McCarty M (1946) Chemical nature and biological specificity of the substance inducing transformation of pneumococcal types. Bacteriol Rev 10:63–71PubMedPubMedCentralGoogle Scholar
  346. McCarty M, Avery OT (1946) Studies on the chemical nature of the substance inducing transformation of pneumococcal types; effect of desoxyribonuclease on the biological activity of the transforming substance. J Exp Med 83:89–96PubMedPubMedCentralCrossRefGoogle Scholar
  347. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856PubMedCrossRefGoogle Scholar
  348. McKay LL, Baldwin KA (1974) Simultaneous loss of proteinase- and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. Appl Microbiol 28:342–346PubMedPubMedCentralGoogle Scholar
  349. McKay LL, Cords BR, Baldwin KA (1973) Transduction of lactose metabolism in Streptococcus lactis C2. J Bacteriol 115:810–815PubMedPubMedCentralGoogle Scholar
  350. McMillan DJ, Geffers R, Buer J, Vlaminckx BJ, Sriprakash KS, Chhatwal GS (2007) Variations in the distribution of genes encoding virulence and extracellular proteins in group A Streptococcus are largely restricted to 11 genomic loci. Microbes Infect 9:259–270PubMedCrossRefGoogle Scholar
  351. McShan WM, Nguyen SV (2016) The bacteriophages of Streptococcus pyogenes. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes: basic biology to clinical manifestations. University of Oklahoma Health Sciences Center, OklahomaGoogle Scholar
  352. McShan WM, Tang YF, Ferretti JJ (1997) Bacteriophage T12 of Streptococcus pyogenes integrates into the gene for a serine tRNA. Mol Microbiol 23:719–728PubMedCrossRefGoogle Scholar
  353. Meier P, Berndt C, Weger N, Wackernagel W (2002) Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type IV pili, competence state and comA. FEMS Microbiol Lett 207:75–80PubMedCrossRefGoogle Scholar
  354. Meijers JA, Winkler KC, Stobberingh EE (1981) Resistance transfer in mixed cultures of Staphylococcus aureus. J Med Microbiol 14:21–39PubMedCrossRefGoogle Scholar
  355. Méjean V, Claverys JP (1988) Polarity of DNA entry in transformation of Streptococcus pneumoniae. Mol Gen Genet 213:444–448PubMedCrossRefGoogle Scholar
  356. Miao R, Guild WR (1970) Competent Diplococcus pneumoniae accept both single- and double-stranded deoxyribonucleic acid. J Bacteriol 101:361–364PubMedPubMedCentralGoogle Scholar
  357. Mikkonen M, Räisänen L, Alatossava T (1996) The early gene region completes the nucleotide sequence of Lactobacillus delbrueckii subsp. lactis phage LL-H. Gene 175:49–57PubMedCrossRefGoogle Scholar
  358. Minkley EG Jr, Willetts NS (1984) Overproduction, purification and characterization of the F traT protein. Mol Gen Genet 196:225–235PubMedCrossRefGoogle Scholar
  359. Mitsuhashi S, Oshima H, Kawaharada U, Hashimoto H (1965) Drug resistance of staphylococci. I. Transduction of tetracycline resistance with phage lysates obtained from multiply resistant staphylococci. J Bacteriol 89:967–976PubMedPubMedCentralGoogle Scholar
  360. Mohan S, Aghion J, Guillen N, Dubnau D (1989) Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. J Bacteriol 171:6043–6051PubMedPubMedCentralCrossRefGoogle Scholar
  361. Mojica-A T, Middleton RB (1971) Fertility of Salmonella typhimurium crosses with Escherichia coli. J Bacteriol 108:1161–1167PubMedPubMedCentralGoogle Scholar
  362. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261PubMedCrossRefGoogle Scholar
  363. Moon BY, Park JY, Robinson DA, Thomas JC, Park YH, Thornton JA, Seo KS (2016) Mobilization of genomic islands of Staphylococcus aureus by temperate bacteriophage. PLoS One 11:e0151409PubMedPubMedCentralCrossRefGoogle Scholar
  364. Moore D, Wu JH, Kathir P, Hamilton CM, Ippen-Ihler K (1987) Analysis of transfer genes and gene products within the traB-traC region of the fertility factor F. J Bacteriol 169:3994–4002PubMedPubMedCentralCrossRefGoogle Scholar
  365. Moore D, Maneewannakul K, Maneewannakul S, Wu JH, Ippen-Ihler K, Bradley DE (1990) Characterization of the F-plasmid conjugative transfer gene traU. J Bacteriol 172:4263–4270PubMedPubMedCentralCrossRefGoogle Scholar
  366. Moore D, Hamilton CM, Maneewannakul K, Mintz Y, Frost LS, Ippen-Ihler K (1993) The Escherichia coli K-12 F plasmid gene traX is required for acetylation of F pilin. J Bacteriol 175:1375–1383PubMedPubMedCentralCrossRefGoogle Scholar
  367. Morrison DA (1977) Transformation in pneumococcus: existence and properties of a complex involving donor deoxyribonucleate single strands in eclipse. J Bacteriol 132:576–583PubMedPubMedCentralGoogle Scholar
  368. Morrison DA, Guild WR (1972) Transformation and deoxyribonucleic acid size: extent of degradation on entry varies with size of donor. J Bacteriol 112:1157–1168PubMedPubMedCentralGoogle Scholar
  369. Morrison TG, Malamy MH (1971) T7 translational control mechanisms and their inhibition by F factors. Nature (Lond) New Biol 231:37–41CrossRefGoogle Scholar
  370. Morse ML (1959) Transduction by staphylococcal bacteriophage. Proc Natl Acad Sci USA 45:722–727PubMedCrossRefGoogle Scholar
  371. Morse ML, Lederberg EM, Lederberg J (1956) Transduction in Escherichia coli K-12. Genetics 41:142–156PubMedPubMedCentralGoogle Scholar
  372. Nakamura S, Higashiyama Y, Izumikawa K, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Miyazaki Y, Mizuta Y, Kohno S (2008) The roles of the quorum-sensing system in the release of extracellular DNA, lipopolysaccharide, and membrane vesicles from Pseudomonas aeruginosa. Jpn J Infect Dis 61:375–378PubMedGoogle Scholar
  373. Nakayama J, Takanami Y, Horii T, Sakuda S, Suzuki A (1998) Molecular mechanism of peptide-specific pheromone signaling in Enterococcus faecalis: functions of pheromone receptor TraA and pheromone-binding protein TraC encoded by plasmid pPD1. J Bacteriol 180:449–456PubMedPubMedCentralGoogle Scholar
  374. Nakayama-Imaohji H, Hirota K, Yamasaki H, Yoneda S, Nariya H, Suzuki M, Secher T, Miyake Y, Oswald E, Hayashi T, Kuwahara T (2016) DNA inversion regulates outer membrane vesicle production in Bacteroides fragilis. PLoS One 11:e0148887PubMedPubMedCentralCrossRefGoogle Scholar
  375. Nedenskov-Sorensen P, Bukholm G, Bovre K (1990) Natural competence for genetic transformation in Campylobacter pylori. J Infect Dis 161:365–366CrossRefGoogle Scholar
  376. Neelapu NRN, Nammi D, Pasupuleti AMC, Challa S (2016) Targets against Helicobacter pylori and other tumor-producing bacteria. In: Villa, Viñas (eds) New weapons to control bacterial growth. Springer, Hiedelberg, pp 239–279CrossRefGoogle Scholar
  377. Nguewa PA, Villa TG, Notario V (2016) Microbiome control in the prevention and early management of cancer. In: Villa, Viñas (eds) New weapons to control bacterial growth. Springer, Hiedelberg, pp 219–237CrossRefGoogle Scholar
  378. Ni L, Jensen SO, Ky Tonthat N, Berg T, Kwong SM, Guan FH, Brown MH, Skurray RA, Firth N, Schumacher MA (2009) The Staphylococcus aureus pSK41 plasmid-encoded ArtA protein is a master regulator of plasmid transmission genes and contains a RHH motif used in alternate DNA-binding modes. Nucleic Acids Res 37:6970–6983PubMedPubMedCentralCrossRefGoogle Scholar
  379. Nickel L, Goodgal SH (1964) Effect of interspecific transformation on linkage relationships of markers in Haemophilus influenzae and Haemophilus parainfluenzae. J Bacteriol 88:1538–1544PubMedPubMedCentralGoogle Scholar
  380. Nielsen J, Hansen FG, Hoppe J, Friedl P, von Meyenburg K (1981) The nucleotide sequence of the atp genes coding for the F0 subunits a, b, c and the F1 subunit delta of the membrane bound ATP synthase of Escherichia coli. Mol Gen Genet 184:33–39PubMedCrossRefGoogle Scholar
  381. Nizet V, Colina KF, Almquist JR, Rubens CE, Smith AL (1996) A virulent nonencapsulated Haemophilus influenzae. J Infect Dis 173:180–186PubMedCrossRefGoogle Scholar
  382. Notani N, Goodgal SH (1966) On the nature of recombinants formed during transformation in Hemophilus influenzae. J Gen Physiol 49:197–209PubMedPubMedCentralCrossRefGoogle Scholar
  383. O’Connor M, Peifer M, Bender W (1989) Construction of large DNA segments in Escherichia coli. Science 244:1307–1312PubMedCrossRefGoogle Scholar
  384. Okubo S, Romig WR (1965) Comparison of ultraviolet sensitivity of Bacillus subtilis bacteriophage SPO2 and its infectious DNA. J Mol Biol 14:130–142PubMedCrossRefGoogle Scholar
  385. Olson JW, Maier RJ (2002) Molecular hydrogen as an energy source for Helicobacter pylori. Science 298:1788–1790PubMedCrossRefGoogle Scholar
  386. Onishi Y (1975) F factor promotes turnover of stable RNA in Escherichia coli. Science 187:257–258PubMedCrossRefGoogle Scholar
  387. Ostro MJ, Giacomoni D, Dray S (1977) Incorporation of high molecular weight RNA into large artificial lipid vesicles. Biochem Biophys Res Commun 76:836–842PubMedCrossRefGoogle Scholar
  388. Ozeki H (1959) Chromosome fragments participating in transduction in Salmonella typhimurium. Genetics 44:457–470PubMedPubMedCentralGoogle Scholar
  389. Pakula R, Walczak W (1963) On the nature of competence of transformable streptococci. J Gen Microbiol 31:125–133PubMedCrossRefGoogle Scholar
  390. Palefski S, Hemphill HE, Kolenbrander PE, Whiteley HR (1972) Dominance relationships in mixedly infected Bacillus subtilis. J Virol 9:594–601PubMedPubMedCentralGoogle Scholar
  391. Panicker MM, Minkley EG Jr (1992) Purification and properties of the F sex factor TraD protein, an inner membrane conjugal transfer protein. J Biol Chem 267:12761–12766PubMedGoogle Scholar
  392. Pansegrau W, Lanka E (1996) Mechanisms of initiation and termination reactions in conjugative DNA processing. Independence of tight substrate binding and catalytic activity of relaxase (TraI) of IncPalpha plasmid RP4. J Biol Chem 271:13068–13076PubMedCrossRefGoogle Scholar
  393. Pantaloni D, Le Clainche C, Carlier MF (2001) Mechanism of actin-based motility. Science 292:1502–1506PubMedCrossRefGoogle Scholar
  394. Parisi JT, Baldwin JN, Sottile M, Vidal L (1976) Location of the coagulase gene in Staphylococcus aureus. J Med Microbiol 9:111–114PubMedCrossRefGoogle Scholar
  395. Pattee PA, Kloos WE, Bodensteiner JB, Zara A (1968) Homogeneity in a Staphylococcus aureus transducing fragment. J Virol 2:652–654PubMedPubMedCentralGoogle Scholar
  396. Peng Y, Lu J, Wong JJ, Edwards RA, Frost LS, Mark Glover JN (2014) Mechanistic basis of plasmid-specific DNA binding of the F plasmid regulatory protein, TraM. J Mol Biol 426:3783–3795PubMedCrossRefGoogle Scholar
  397. Pereira MS, Barreto VP, Siqueira-Júnior JP (1997) Phage-mediated transfer of tetracycline resistance in Staphylococcus aureus isolated from cattle in Brazil. Microbios 92:147–155PubMedGoogle Scholar
  398. Perumal NB, Minkley EG Jr (1984) The product of the F sex factor traT surface exclusion gene is a lipoprotein. J Biol Chem 259(9):5357–5360PubMedGoogle Scholar
  399. Pincock S (2005) Nobel Prize winners Robin Warren and Barry Marshall. Lancet 366:1429PubMedCrossRefGoogle Scholar
  400. Pittman M (1931) Variation and type specificity in the bacterial species Hemophilus influenzae. J Exp Med 53:471–492PubMedPubMedCentralCrossRefGoogle Scholar
  401. Podvin L, Steinmetz M (1992) A degU-containing SP beta prophage complements superactivator mutations affecting the Bacillus subtilis degSU operon. Res Microbiol 143:559–567PubMedCrossRefGoogle Scholar
  402. Pomrenke ME, Ferretti JJ (1989) Physical maps of the streptococcal bacteriophage A25 and C1 genomes. J Basic Microbiol 29:395–398PubMedCrossRefGoogle Scholar
  403. Postel EH, Goodgal SH (1966) Uptake of “single-stranded” DNA in Hemophilus influenzae and its ability to transform. J Mol Biol 16:317–327PubMedCrossRefGoogle Scholar
  404. Pritchard RH, Chandler MG, Collins J (1975) Independence of F replication and chromosome replication in Escherichia coli. Mol Gen Genet 138:143–155PubMedCrossRefGoogle Scholar
  405. Puck TT (1949) A reversible transformation of T1 bacteriophage. J Bacteriol 57:647–655PubMedPubMedCentralGoogle Scholar
  406. Pusch O, Kalyanaraman R, Tucker LD, Wells JM, Ramratnam B, Boden D (2006) An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV-1 fusion inhibitors by lactobacilli. AIDS 20:1917–1922PubMedCrossRefGoogle Scholar
  407. Quinn RW (1982) Epidemiology of group A streptococcal infections—their changing frequency and severity. Yale J Biol Med 55:265–270PubMedPubMedCentralGoogle Scholar
  408. Rabel C, Grahn AM, Lurz R, Lanka E (2003) The VirB4 family of proposed traffic nucleoside triphosphatases: common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J Bacteriol 185:1045–1058PubMedPubMedCentralCrossRefGoogle Scholar
  409. Ranhand JM (1969) Competence in Haemophilus influenzae. A role for inosine and lactate in the primary cell-deoxyribonucleic acid attachment reaction. J Gen Microbiol 57:257–262PubMedCrossRefGoogle Scholar
  410. Ranhand JM, Lichstein HC (1969) Effect of selected antibiotics and other inhibitors on competence development in Haemophilus influenzae. J Gen Microbiol 55:37–43PubMedCrossRefGoogle Scholar
  411. Ravin V, Sasaki T, Räisänen L, Riipinen KA, Alatossava T (2006) Effective plasmid pX3 transduction in Lactobacillus delbrueckii by bacteriophage LL-H. Plasmid 55:184–193PubMedCrossRefGoogle Scholar
  412. Ream LW, Margossian L, Clark AJ, Hansen FG, von Meyenburg K (1980) Genetic and physical mapping of recF in Escherichia coli K-12. Mol Gen Genet 180:115–121PubMedCrossRefGoogle Scholar
  413. Redfield RJ, Cameron AD, Qian Q, Hinds J, Ali TR, Kroll JS, Langford PR (2005) A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae. J Mol Biol 347:735–747PubMedCrossRefGoogle Scholar
  414. Redfield RJ, Findlay WA, Bossé J, Kroll JS, Cameron AD, Nash JH (2006) Evolution of competence and DNA uptake specificity in the Pasteurellaceae. BMC Evol Biol 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  415. Regué M, Fabregat C, Viñas M (1991) A generalized transducing bacteriophage for Serratia marcescens. Res Microbiol 142:23–27PubMedCrossRefGoogle Scholar
  416. Reiter B (1949) Lysogenic strains of lactic streptococci. Nature 164:667–668PubMedCrossRefGoogle Scholar
  417. Renelli M, Matias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:2161–2169PubMedCrossRefGoogle Scholar
  418. Resch G, Francois P, Morisset D, Stojanov M, Bonetti EJ, Schrenzel J, Sakwinska O, Moreillon P (2013) Human-to-bovine jump of Staphylococcus aureus CC8 is associated with the loss of a beta-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS One 8:e58187PubMedPubMedCentralCrossRefGoogle Scholar
  419. Rhoades M, Thomas CA Jr (1968) The P22 bacteriophage DNA molecule. II. Circular intracellular forms. J Mol Biol 37:41–61PubMedCrossRefGoogle Scholar
  420. Rhoades M, MacHattie LA, Thomas CA Jr (1968) The P22 bacteriophage DNA molecule. I. The mature form. J Mol Biol 37:21–40PubMedCrossRefGoogle Scholar
  421. Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8113–8118PubMedCrossRefGoogle Scholar
  422. Rippon JE (1952) A new serological division of Staphylococcus aureus bacteriophages: group G. Nature 170:287PubMedCrossRefGoogle Scholar
  423. Ritz HL, Baldwin JN (1961) Transduction of capacity to produce staphylococcal penicillinase. Proc Soc Exp Biol Med 107:678–680PubMedCrossRefGoogle Scholar
  424. Robbins PW, Keller JM, Wright A, Bernstein RL (1965) Enzymatic and kinetic studies on the mechanism of o-antigen conversion by bacteriophage epsilon-15. J Biol Chem 240:384–390PubMedGoogle Scholar
  425. Roberts MD, Martin NL, Kropinski AM (2004) The genome and proteome of coliphage T1. Virology 318:245–266PubMedCrossRefGoogle Scholar
  426. Rocourt J (1986) Bacteriophages and bacteriocins of the genus Listeria. Zentralbl Bakteriol Mikrobiol Hyg A 261:12–28PubMedGoogle Scholar
  427. Rosenthal R, Toye PA, Korman RZ, Zahler SA (1979) The prophage of SP beta c2dcitK1, A defective specialized transducing phage of Bacillus subtilis. Genetics 92:721–739PubMedPubMedCentralGoogle Scholar
  428. Roszczyk E, Goodgal S (1975) Methylase activities from Haemophilus influenzae that protect Haemophilus parainfluenzae transforming deoxyribonucleic acid from inactivation by Haemophilus influenzae endonuclease R. J Bacteriol 123:287–293PubMedPubMedCentralGoogle Scholar
  429. Rothman JL (1965) Transduction studies on the relation between prophage and host chromosome. J Mol Biol 12:892–912PubMedCrossRefGoogle Scholar
  430. Rountree PM (1949) The serological differentiation of staphylococcal bacteriophages. J Gen Microbiol 3:164–173PubMedCrossRefGoogle Scholar
  431. Rutberg L (1982) Temperate bacteriophages in Bacillus subtilis. In: Dudnau (ed) The molecular biology of the Bacilli. Academic, New YorkGoogle Scholar
  432. Rutberg L, Armentrout RW, Jonasson J (1972) Unrelatedness of temperate Bacillus subtilis bacteriophages SP02 and phi105. J Virol 9:732–737PubMedPubMedCentralGoogle Scholar
  433. Rybchin VN (1984) Genetics of bacteriophage phi 80—a review. Gene 27:3–11PubMedCrossRefGoogle Scholar
  434. Sadykov MR, Bayles KW (2012) The control of death and lysis in staphylococcal biofilms: a coordination of physiological signals. Curr Opin Microbiol 15:211–215PubMedPubMedCentralCrossRefGoogle Scholar
  435. Saitoh T, Hiraga S (1975) F deoxyribonucleic acid superinfected into phenocopies of donor strains. J Bacteriol 121:1007–1013PubMedPubMedCentralGoogle Scholar
  436. Sanchini A, Del Grosso M, Villa L, Ammendolia MG, Superti F, Monaco M, Pantosti A (2014) Typing of Panton-Valentine leukocidin-encoding phages carried by methicillin-susceptible and methicillin-resistant Staphylococcus aureus from Italy. Clin Microbiol Infect 20:O840–O846PubMedCrossRefGoogle Scholar
  437. Sanderson KE (1967) Revised linkage map of Salmonella typhimurium. Bacteriol Rev 31:354–372PubMedPubMedCentralGoogle Scholar
  438. Sanderson KE, Demerec M (1965) The linkage map of Salmonella typhimurium. Genetics 51:897–913PubMedPubMedCentralGoogle Scholar
  439. Sanderson KE, Hessel A, Rudd KE (1995) Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev 59:241–303PubMedPubMedCentralGoogle Scholar
  440. Sastre JI, Cabezón E, de la Cruz F (1998) The carboxyl terminus of protein TraD adds specificity and efficiency to F-plasmid conjugative transfer. J Bacteriol 180:6039–6042PubMedPubMedCentralGoogle Scholar
  441. Sato K, Matsushiro A (1965) The tryptophan operon regulated by phage immunity. J Mol Biol 14:608–610PubMedCrossRefGoogle Scholar
  442. Saunders NJ, Peden JF, Moxon ER (1999) Absence in Helicobacter pylori of an uptake sequence for enhancing uptake of homospecific DNA during transformation. Microbiology 145:3523–3528PubMedCrossRefGoogle Scholar
  443. Schandel KA, Maneewannakul S, Vonder Haar RA, Ippen-Ihler K, Webster RE (1990) Nucleotide sequence of the F plasmid gene, traC, and identification of its product. Gene 96:137–140PubMedCrossRefGoogle Scholar
  444. Schandel KA, Muller MM, Webster RE (1992) Localization of TraC, a protein involved in assembly of the F conjugative pilus. J Bacteriol 174:3800–3806PubMedPubMedCentralCrossRefGoogle Scholar
  445. Scherzer E, Auer B, Schweiger M (1987) Identification, purification, and characterization of Escherichia coli virus T1 DNA methyltransferase. J Biol Chem 262:15225–15231PubMedGoogle Scholar
  446. Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56PubMedPubMedCentralCrossRefGoogle Scholar
  447. Schroeder CJ, Pattee PA (1984) Transduction analysis of transposon Tn551 insertions in the trp-thy region of the Staphylococcus aureus chromosome. J Bacteriol 157:533–537PubMedPubMedCentralGoogle Scholar
  448. Schultz EW (1945) Listerella infections: a review. Stanford Med Bull 3:135–151Google Scholar
  449. Schwesinger MD, Novick RP (1975) Prophage-dependent plasmid integration in Staphylococcus aureus. J Bacteriol 123:724–738PubMedPubMedCentralGoogle Scholar
  450. Sedgwick B, Setlow JK (1976) Single-stranded regions in transforming deoxyribonucleic acid after uptake by competent Haemophilus influenzae. J Bacteriol 125:588–594PubMedPubMedCentralGoogle Scholar
  451. Sermonti G, Bandiera M, Spadasermonti I (1966) New approach to the genetics of Streptomyces coelicolor. J Bacteriol 91:384–392PubMedPubMedCentralGoogle Scholar
  452. Seto H, Tomasz A (1974) Early stages in DNA binding and uptake during genetic transformation of pneumococci. Proc Natl Acad Sci USA 71:1493–1498PubMedCrossRefGoogle Scholar
  453. Seto H, Tomasz A (1975) Selective release of a deoxyribonucleic acid-binding factor from the surface of competent pneumococci. J Bacteriol 124:969–976PubMedPubMedCentralGoogle Scholar
  454. Seto H, Lopez R, Garrigan O, Tomasz A (1975a) Nucleolytic degradation of homologous and heterologous deoxyribonucleic acid molecules at the surface of competent pneumococci. J Bacteriol 222:676–685Google Scholar
  455. Seto H, Lopez R, Tomasz A (1975b) Cell surface located deoxyribonucleic acid receptors in transformable pneumococci. J Bacteriol 122:1339–1350PubMedPubMedCentralGoogle Scholar
  456. Shapiro JA, Dean DH, Halvorson HO (1974) Low-frequency specialized transduction with Bacillus subtilis bacteriophage phi 105. Virology 62:393–403PubMedCrossRefGoogle Scholar
  457. Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12:509–520PubMedPubMedCentralCrossRefGoogle Scholar
  458. Sherman JM, Wing HU (1937) Attempts to reveal sex in bacteria; with some light on fermentative variability in the coli-aerogenes group. J Bacteriol 33:315–321PubMedPubMedCentralGoogle Scholar
  459. Short SA, White DC, Kaback HR (1972) Active transport in isolated bacterial membrane vesicles. V. The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus. J Biol Chem 247:298–304PubMedGoogle Scholar
  460. Shpakovski GV, Karakashly MP, Berlin YA (1989) Lambda plac10 transducing bacteriophage: DNA primary structure of the region of the abnormal excision. FEBS Lett 258:171–174PubMedCrossRefGoogle Scholar
  461. Sikora B, Eoff RL, Matson SW, Raney KD (2006) DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor. J Biol Chem 281(47):36110–36116PubMedCrossRefGoogle Scholar
  462. Sikorski J, Graupner S, Lorenz MG, Wackernagel W (1998) Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology 144:569–576PubMedCrossRefGoogle Scholar
  463. Sisco KL, Smith HO (1979) Sequence-specific DNA uptake in Haemophilus transformation. Proc Natl Acad Sci USA 76:972–976PubMedCrossRefGoogle Scholar
  464. Skjold SA, Maxted WR, Wannamaker LW (1982) Transduction of the genetic determinant for streptolysin S in group A streptococci. Infect Immun 38:183–188PubMedPubMedCentralGoogle Scholar
  465. Smeets LC, Kusters JG (2002) Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol 10:159–162PubMedCrossRefGoogle Scholar
  466. Smeets LC, Bijlsma JJ, Kuipers EJ, Vandenbroucke-Grauls CM, Kusters JG (2000) The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol Med Microbiol 27:99–102PubMedCrossRefGoogle Scholar
  467. Smith WE (1944) Observations indicating a sexual mode of reproduction in a common bacterium (Bacteroides funduliformis). J Bacteriol 47:417–418Google Scholar
  468. Smith HO (1980) New insights into how bacteria take up DNA during transformation. Am J Trop Med Hyg 29:1085–1088PubMedCrossRefGoogle Scholar
  469. Smith HO, Tomb JF, Dougherty BA, Fleischmann RD, Venter JC (1995) Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269:538–540PubMedCrossRefGoogle Scholar
  470. Soler N, Krupovic M, Marguet E, Forterre P (2015) Membrane vesicles in natural environments: a major challenge in viral ecology. ISME J 9:793–796PubMedCrossRefGoogle Scholar
  471. Solomon JM, Grossman AD (1996) Who’s competent and when: regulation of natural genetic competence in bacteria. Trends Genet 12:150–155PubMedCrossRefGoogle Scholar
  472. Spilman MS, Damle PK, Dearborn AD, Rodenburg CM, Chang JR, Wall EA, Christie GE, Dokland T (2012) Assembly of bacteriophage 80alpha capsids in a Staphylococcus aureus expression system. Virology 434:242–250PubMedPubMedCentralCrossRefGoogle Scholar
  473. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 4:1072–1078CrossRefGoogle Scholar
  474. Steinhart WL, Herriott RM (1968) Fate of recipient deoxyribonucleic acid during transformation in Haemophilus influenzae. J Bacteriol 96:1718–1724PubMedPubMedCentralGoogle Scholar
  475. Stewart GJ, Carlson CA, Ingraham JL (1983) Evidence for an active role of donor cells in natural transformation of Pseudomonas stutzeri. J Bacteriol 156:30–35PubMedPubMedCentralGoogle Scholar
  476. Stocker BA, Zinder ND, Lederberg J (1953) Transduction of flagellar characters in Salmonella. J Gen Microbiol 9:410–433PubMedCrossRefGoogle Scholar
  477. Stuart JG, Ferretti JJ (1973) Transduction of rifampin resistance in group A streptococci. J Bacteriol 115:709–710PubMedPubMedCentralGoogle Scholar
  478. Stuart JG, Ferretti JJ (1978) Genetic analysis of antibiotic resistance in Streptococcus pyogenes. J Bacteriol 133:852–859PubMedPubMedCentralGoogle Scholar
  479. Stuart SE, Welshimer HJ (1973) Intrageneric relatedness of Listeria Pirie. Int J Syst Bacteriol 23:8–14CrossRefGoogle Scholar
  480. Stuy JH (1976) Restriction enzymes do not play a significant role in Haemophilus homospecific or heterospecific transformation. J Bacteriol 128:212–220PubMedPubMedCentralGoogle Scholar
  481. Stuy JH (1980) Chromosomally integrated conjugative plasmids are common in antibiotic-resistant Haemophilus influenzae. J Bacteriol 142:925–930PubMedPubMedCentralGoogle Scholar
  482. Stuy JH, Van der Have B (1971) Degradation of adsorbed transforming DNA by Haemophilus influenzae. J Gen Microbiol 65:147–152PubMedCrossRefGoogle Scholar
  483. Sugino Y, Hirota Y (1962) Conjugal fertility associated with resistance factor R in Escherichia coli. J Bacteriol 84:902–910PubMedPubMedCentralGoogle Scholar
  484. Sutrina SL, Scocca JJ (1979) Haemophilus influenzae periplasmic protein which binds deoxyribonucleic acid: properties and possible participation in genetic transformation. J Bacteriol 139:1021–1027PubMedPubMedCentralGoogle Scholar
  485. Sword CP, Pickett MJ (1961) The isolation and characterization of bacteriophages from Listeria monocytogenes. J Gen Microbiol 25:241248CrossRefGoogle Scholar
  486. Tallent SM, Langston TB, Moran RG, Christie GE (2007) Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J Bacteriol 189:7520–7524PubMedPubMedCentralCrossRefGoogle Scholar
  487. Tanaka S, Matsushiro A (1985) Characterization and sequencing of the region containing gene N, the nutL site and t L1 terminator of bacteriophage phi 80. Gene 38(1–3):119–129PubMedGoogle Scholar
  488. Tandberg J, Oliver C, Lagos L, Gaarder M, Yáñez AJ, Ropstad E, Winther-Larsen HC (2017) Membrane vesicles from Piscirickettsia salmonis induce protective immunity and reduce development of salmonid rickettsial septicemia in an adult zebrafish model. Fish Shellfish Immunol 67:189–198PubMedCrossRefGoogle Scholar
  489. Tashiro Y, Hasegawa Y, Shintani M, Takaki K, Ohkuma M, Kimbara K, Futamata H (2017) Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells. Front Microbiol 8:571PubMedPubMedCentralCrossRefGoogle Scholar
  490. Tatum EL, Lederberg J (1947) Gene recombination in the bacterium Escherichia coli. J Bacteriol 53:673–684PubMedPubMedCentralGoogle Scholar
  491. Taylor AL (1963) Bacteriophage-induced mutations in E. coli. Proc Natl Acad Sci USA 50:1043–1051PubMedCrossRefGoogle Scholar
  492. Terschüren PA, Noyer-Weidner M, Trautner TA (1987) Recombinant derivatives of Bacillus subtilis phage Z containing the DNA methyltransferase genes of related methylation-proficient phages. J Gen Microbiol 133:945–952PubMedGoogle Scholar
  493. Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209PubMedCrossRefGoogle Scholar
  494. Tomasz A (1970) Cellular metabolism in genetic transformation of pneumococci: requirement for protein synthesis during induction of competence. J Bacteriol 101:860–871PubMedPubMedCentralGoogle Scholar
  495. Tomasz A (1971) The bacterial cell surface. Nature 234:389–392PubMedCrossRefGoogle Scholar
  496. Tomasz A, Westphal M (1971) Abnormal autolytic enzyme in a pneumococus with altered teichoic acid composition. Proc Natl Acad Sci USA 68:2627–2630PubMedCrossRefGoogle Scholar
  497. Tomasz A, Zanati E, Ziegler R (1971) DNA uptake during genetic transformation and the growing zone of the cell envelope. Proc Natl Acad Sci USA 68:1848–1852PubMedCrossRefGoogle Scholar
  498. Tomb JF (1992) A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci USA 89:10252–10256PubMedCrossRefGoogle Scholar
  499. Tomb JF, Barcak GJ, Chandler MS, Redfield RJ, Smith HO (1989) Transposon mutagenesis, characterization, and cloning of transformation genes of Haemophilus influenzae Rd. J Bacteriol 171:3796–3302PubMedPubMedCentralCrossRefGoogle Scholar
  500. Tomb JF, el-Hajj H, Smith HO (1991) Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. Gene 104:1–10PubMedCrossRefGoogle Scholar
  501. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou J, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547CrossRefGoogle Scholar
  502. Tomono M, Shiozaki M, Ikeda H (1989) Formation of lambda transducing phage in vitro: involvement of DNA gyrase. J Biochem 105:423–428PubMedCrossRefGoogle Scholar
  503. Tormo MA, Ferrer MD, Maiques E, Ubeda C, Selva L, Lasa I, Calvete JJ, Novick RP, Penades JR (2008) Staphylococcus aureus pathogenicity Island DNA is packaged in particles composed of phage proteins. J Bacteriol 190:2434–2440PubMedPubMedCentralCrossRefGoogle Scholar
  504. Tormo-Mas MA, Mir I, Shrestha A, Tallent SM, Campoy S, Lasa I, Barbe J, Novick RP, Christie GE, Penades JR (2010) Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465:779–782PubMedPubMedCentralCrossRefGoogle Scholar
  505. Traxler BA, Minkley EG Jr (1987) Revised genetic map of the distal end of the F transfer operon: implications for DNA helicase 1, nicking at oriT, and conjugal DNA transport. J Bacteriol 169:3251–3259PubMedPubMedCentralCrossRefGoogle Scholar
  506. Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E (2018) Extracellular vesicle RNA: a universal mediator of microbial communication? Trends Microbiol 26:401–410PubMedCrossRefGoogle Scholar
  507. Tsuda M, Karita M, Nakazawa T (1993) Genetic transformation in Helicobacter pylori. Microbiol Immunol 37:85–89PubMedCrossRefGoogle Scholar
  508. Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. The Lancet 186:1241–1243CrossRefGoogle Scholar
  509. Twort FW, Twort DN (1921) An investigation of influenza. J Hyg 20:85–98PubMedCrossRefGoogle Scholar
  510. Tye BK, Chan RK, Botstein D (1974a) Packaging of an oversize transducing genome by Salmonella phage P22. J Mol Biol 85:485–500PubMedCrossRefGoogle Scholar
  511. Tye BK, Huberman JA, Botstein D (1974b) Non-random circular permutation of phage P22 DNA. J Mol Biol 85:501–528PubMedCrossRefGoogle Scholar
  512. Ubukata K, Konno M, Fujii R (1975) Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J Antibiot (Tokyo) 28:681–688CrossRefGoogle Scholar
  513. van Biesen T, Söderbom F, Wagner EG, Frost LS (1993) Structural and functional analyses of the FinP antisense RNA regulatory system of the F conjugative plasmid. Mol Microbiol 10:35–43PubMedCrossRefGoogle Scholar
  514. VanWagoner TM, Whitby PW, Morton DJ, Seale TW, Stull TL (2004) Characterization of three new competence-regulated operons in Haemophilus influenzae. J Bacteriol 186:6409–6421PubMedPubMedCentralCrossRefGoogle Scholar
  515. Vdovikova S, Gilfillan S, Wang S, Dongre M, Wai SN Hurtado A (2018) Modulation of gene transcription and epigenetics of colon carcinoma cells by bacterial membrane vesicles. Sci Rep 8:7434PubMedPubMedCentralCrossRefGoogle Scholar
  516. Veereman Wauters G, Ferrell L, Ostroff JW, Heyman MB (1990) Hyperplastic gastric polyps associated with persistent Helicobacter pylori infection and active gastritis. Am J Gastroenterol 85:1395–1397PubMedGoogle Scholar
  517. Velimirov B, Hagemann S (2011) Mobilizable bacterial DNA packaged into membrane vesicles induces serial transduction. Mob Genet Elem 1:80–81CrossRefGoogle Scholar
  518. Verdino P, Keller W, Strohmaier H, Bischof K, Lindner H, Koraimann G (1999) The essential transfer protein TraM binds to DNA as a tetramer. J Biol Chem 274:37421–37428PubMedCrossRefGoogle Scholar
  519. Verkaik NJ, Benard M, Boelens HA, de Vogel CP, Nouwen JL, Verbrugh HA, Melles DC, van Belkum A, van Wamel WJ (2011) Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect 17:343–348PubMedCrossRefGoogle Scholar
  520. Villafane R, Zayas M, Gilcrease EB, Kropinski AM, Casjens SR (2008) Genomic analysis of bacteriophage epsilon 34 of Salmonella enterica serovar Anatum (15+). BMC Microbiol 8:227PubMedPubMedCentralCrossRefGoogle Scholar
  521. Vivian A, Hopwood DA (1970) Genetic control of fertility in Streptomyces coelicolor A3(2): the IF fertility type. J Gen Microbiol 64:101–117PubMedCrossRefGoogle Scholar
  522. Vlaminckx BJ, Schuren FH, Montijn RC, Caspers MP, Beitsma MM, Wannet WJ, Schouls LM, Verhoef J, Jansen WT (2007) Dynamics in prophage content of invasive and noninvasive M1 and M28 Streptococcus pyogenes isolates in The Netherlands from 1959 to 1996. Infect Immun 75:3673–3679PubMedPubMedCentralCrossRefGoogle Scholar
  523. Voll MJ, Goodgal SH (1961) Recombination during transformation in Hemophilus influenzae. Proc Natl Acad Sci USA 47:505–512PubMedCrossRefGoogle Scholar
  524. von Meyenburg K, Hansen FG, Nielsin LD, Riise E (1978) Origin of replication, oriC, or the Escherichia coli chromosome on specialized transducing phages lambda asn. Mol Gen Genet 160:287–295CrossRefGoogle Scholar
  525. Wagner EF, Ponta H, Schweiger M (1977) Development of E. coli virus T1: the pattern of gene expression. Mol Gen Genet 150:21–28PubMedCrossRefGoogle Scholar
  526. Wagner EF, Auer B, Schweiger M (1979) Development of Escherichia coli virus T1: escape from host restriction. J Virol 29:1229–1231PubMedPubMedCentralGoogle Scholar
  527. Waksman G, Fronzes R (2010) Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 35:691–698PubMedCrossRefGoogle Scholar
  528. Waldron DE, Lindsay JA (2006) Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578–5585PubMedPubMedCentralCrossRefGoogle Scholar
  529. Wang Y, Taylor DE (1990) Natural transformation in Campylobacter species. J Bacteriol 172:949–955PubMedPubMedCentralCrossRefGoogle Scholar
  530. Welker NE, Campbell L (1967) Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J Bacteriol 94:1124–1130PubMedPubMedCentralGoogle Scholar
  531. Werisch M, Berger U, Berendonk TH (2017) Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids. Plasmid 91:96–104PubMedCrossRefGoogle Scholar
  532. Wessels MR, Moses AE, Goldberg JB, DiCesare TJ (1991) Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci USA 88:8317–8321PubMedCrossRefGoogle Scholar
  533. Wijffelman CA, Westmaas GC, van de Putte P (1973) Similarity of vegetative map and prophage map of bacteriophage Mu-1. Virology 54:125–134PubMedCrossRefGoogle Scholar
  534. Will WR, Frost LS (2006) Hfq is a regulator of F-plasmid TraJ and TraM synthesis in Escherichia coli. J Bacteriol 188:124–131PubMedPubMedCentralCrossRefGoogle Scholar
  535. Willetts NS (1973) Characterization of the F transfer cistron, traL. Genet Res 21:205–213PubMedCrossRefGoogle Scholar
  536. Willetts N (1977) The transcriptional control of fertility of F-like plasmids. J Mol Biol 112:141–148PubMedCrossRefGoogle Scholar
  537. Willetts N, Maule J, McIntire S (1975) The genetic locations of traO, finP and tra-4 on the E. coli K12 sex factor F. Genet Res 26:255–263PubMedCrossRefGoogle Scholar
  538. Williams SL, Schildbach JF (2007) TraY and integration host factor oriT binding sites and F conjugal transfer: sequence variations, but not altered spacing, are tolerated. J Bacteriol 189:3813–3823PubMedPubMedCentralCrossRefGoogle Scholar
  539. Wise EM Jr, Alexander SP, Powers M (1973) Adenosine 3′:5′-cyclic monophosphate as a regulator of bacterial transformation. Proc Natl Acad Sci USA 70:471–474PubMedCrossRefGoogle Scholar
  540. Wollman EL, Jacob F (1957) Processes of conjugation and recombination in Escherichia coli. II. Chromosomal location of phage lambda and genetic results of zygotic induction. Ann Inst Pasteur (Paris) 93:323–339Google Scholar
  541. Wollman EL, Jacob F (1958) Process of conjugation & recombination in Escherichia coli. V. Mechanism of transference of genetic material. Ann Inst Pasteur (Paris) 95:641–666Google Scholar
  542. Wollman E, Wollman E (1925) Sur la tranission “parahéréditaire” de caracteres chez les bacteries. Compt rend soc biol 98:1568–1569Google Scholar
  543. Wollman EL, Jacob F, Hayes W (1956) Conjugation and genetic recombination in Escherichia coli K-12. Cold Spring Harb Symp Quant Biol 21:141–162PubMedCrossRefGoogle Scholar
  544. Wong JJ, Lu J, Glover JN (2012) Relaxosome function and conjugation regulation in F-like plasmids—a structural biology perspective. Mol Microbiol 85:602–617PubMedCrossRefGoogle Scholar
  545. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, De-Boni M, Isaacson PG (1993) Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 342:575–577PubMedCrossRefGoogle Scholar
  546. Wright NT, Raththagala M, Hemmis CW, Edwards S, Curtis JE, Krueger S, Schildbach JF (2012) Solution structure and small angle scattering analysis of TraI (381-569). Proteins 80:2250–2261PubMedPubMedCentralCrossRefGoogle Scholar
  547. Wu JH, Ippen-Ihler K (1989) Nucleotide sequence of traQ and adjacent loci in the Escherichia coli K-12 F-plasmid transfer operon. J Bacteriol 171:213–221PubMedPubMedCentralCrossRefGoogle Scholar
  548. Xia G, Wolz C (2014) Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601PubMedCrossRefGoogle Scholar
  549. Xia G, Corrigan RM, Winstel V, Goerke C, Grundling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–4009PubMedPubMedCentralCrossRefGoogle Scholar
  550. Yagil E, Dolev S, Oberto J, Kislov N, Ramniab N, Weisberg RA (1989) Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J Mol Biol 207:695–717PubMedCrossRefGoogle Scholar
  551. Yamada Y, Nakada D (1975) F-Factor-mediated restriction of bacteriophage T7: protein synthesis in cell-free systems from T7-infected Escherichia coli F- and F+ cells. J Virol 16:1483–1491PubMedPubMedCentralGoogle Scholar
  552. Yamamoto M, Lindahl L, Nomura M (1976) Synthesis of ribosomal RNA in E. coli: analysis using deletion mutants of a lambda transducing phage carrying ribosomal RNA genes. Cell 7:179–190PubMedCrossRefGoogle Scholar
  553. Yasunaka K, Tsukamoto H, Okubo S, Horiuchi T (1970) Isolation and properties of suppressor-sensitive mutants of Bacillus subtilis bacteriophage SP02. J Virol 5:819–821PubMedPubMedCentralGoogle Scholar
  554. Yoshikawa M, Akiba T (1961) Studies on transferable drug resistance in bacteria. II Interrelationship between transferable resistance factor and F factor. Jpn J Microbiol 5:375–381PubMedCrossRefGoogle Scholar
  555. Zabriskie JB (1964) The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci. J Exp Med 119:761–780PubMedPubMedCentralCrossRefGoogle Scholar
  556. Zahler SA, Korman RZ, Rosenthal R, Hemphill HE (1977) Bacillus subtilis bacteriophage SPbeta: localization of the prophage attachment site, and specialized transduction. J Bacteriol 129:556–558PubMedPubMedCentralGoogle Scholar
  557. Zahler SA, Korman RZ, Thomas C, Fink PS, Weiner MP, Odebralski JM (1987) H2, a temperate bacteriophage isolated from Bacillus amyloliquefaciens strain H. J Gen Microbiol 133:2937–2944PubMedGoogle Scholar
  558. Zamenhof S, Alexander HE, Leidy G (1953) Studies on the chemistry of the transforming activity. I. Resistance to physical and chemical agents. J Exp Med 98:373–397PubMedPubMedCentralCrossRefGoogle Scholar
  559. Zimmer M, Sattelberger E, Inman RB, Calendar R, Loessner MJ (2003) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol Microbiol 50:303–317PubMedCrossRefGoogle Scholar
  560. Zinder ND (1955) Bacterial transduction. J Cell Physiol 45:23–49CrossRefGoogle Scholar
  561. Zinder ND (1960a) Hybrids of Escherichia and Salmonella. Science 131:813–815PubMedCrossRefGoogle Scholar
  562. Zinder ND (1960b) Sexuality and mating in Salmonella. Science 131:924–926PubMedCrossRefGoogle Scholar
  563. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699PubMedPubMedCentralGoogle Scholar
  564. Zoon KC, Scocca JJ (1975) Constitution of the cell envelope of Haemophilus influenzae in relation to competence for genetic transformation. J Bacteriol 123:666–677PubMedPubMedCentralGoogle Scholar
  565. Zoon KC, Habersat M, Scocca JJ (1975) Multiple regulatory events in the development of competence for genetic transformation in H. influenzae. J Bacteriol 124:1607–1609PubMedPubMedCentralGoogle Scholar
  566. Zoon KC, Habersat M, Scocca JJ (1976) Synthesis of envelope polypeptides by Haemophilus influenzae during development of competence for genetic transformation. J Bacteriol 127:545–554PubMedPubMedCentralGoogle Scholar
  567. Zulty JJ, Barcak GJ (1995) Identification of a DNA transformation gene required for com101A+ expression and supertransformer phenotype in Haemophilus influenzae. Proc Natl Acad Sci USA 92:3616–3220PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • T. G. Villa
    • 1
  • L. Feijoo-Siota
    • 1
  • A. Sánchez-Pérez
    • 2
  • JL. R. Rama
    • 1
  • C. Sieiro
    • 3
  1. 1.Faculty of Pharmacy, Department of MicrobiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia
  3. 3.Faculty of Sciences, Department of MicrobiologyUniversity of VigoVigoSpain

Personalised recommendations