Advertisement

Antimicrobial Stewardship in Immunocompromised Hosts

  • Wonhee So
Chapter

Abstract

Although an antimicrobial stewardship program (ASP) as a primary tool to combat global development of antimicrobial resistance has been widely accepted in the last decade, the key principles of ASP have not always been adopted in patients with significant immune defects. Multiple barriers exist for implementing ASP in this population: physician’s perceptions regarding the immunocompromised as sicker patients and fear of poor outcomes, a wide range of possible infectious etiologies with diagnostic uncertainty, complexity in making early diagnosis, impaired inflammatory responses, and difficulty in controlling the source of infections due to thrombocytopenia, and limited surgical interventions. However, ASP in the immunocompromised hosts is an important patient safety measure as development of multidrug-resistant (MDR) pathogens is an emerging problem. This chapter discusses strategies and the need for ASP in the immunocompromised host with cancer.

Keywords

Antimicrobial stewardship program (ASP) Formulary Management Drug Interactions Early de-escalation in febrile neutropenic patients Antimicrobial Restriction Prospective audit and feedback Microbiological data Duration of therapy Antifungal stewardship Biomarkers Rapid Diagnostics Intravenous to oral 

References

  1. 1.
    Dellit TH, Owens RC, McGowan JE Jr, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin Infect Dis. 2007;44:159–77.CrossRefGoogle Scholar
  2. 2.
    Winthrop KL, Mariette X, Silva JT, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus document on the safety of targeted and biological therapies: an infectious diseases perspective (soluble immune effector molecules [II]: agents targeting interleukins,immunoglobulins and complement factors). Clin Microbiol Infect. 2018;24:S21–40.  https://doi.org/10.1016/j.cmi.2018.02.002.CrossRefPubMedGoogle Scholar
  3. 3.
    So W, Pandya S, Quilitz R, et al. Infectious risks and complications in adult leukemic patients receiving blinatumomab. Mediterr J Hematol Infect Dis. 2018;10(1):e2018029.  https://doi.org/10.4084/MJHID.2018.029.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    National comprehensive cancer network. Prevention and treatment of cancer-related infections version I. 2018. Accessed online on Apr 2018. https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy.
  5. 5.
    Gafter-Gvili A, Fraser A, Paul M, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012;(4):CD004386.Google Scholar
  6. 6.
    Yemm KE, Barreto JN, Mara KC, et al. A comparison of levofloxacin and oral third-generation cephalosporins as antibacterial prophylaxis in acute leukaemia patients during chemotherapy-induced neutropenia. J Antimicrob Chemother. 2018;73:204–11.CrossRefGoogle Scholar
  7. 7.
    Taplitz RA, Kennedy EB, Bow EJ, et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice Guideline Update. J Clin Oncol. 2018:JCO2017776211.  https://doi.org/10.1200/JCO.2017.77.6211.CrossRefGoogle Scholar
  8. 8.
    Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with Cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52:e56–93.CrossRefGoogle Scholar
  9. 9.
    Tverdek FP, Rolston KV, Chemaly RF. Antimicrobial stewardship in patients with cancer. Pharmacotherapy. 2012;32:722.CrossRefGoogle Scholar
  10. 10.
    Giannella M, Bartoletti M, Morelli MC, et al. Risk factors for infection with carbapenem-resistant klebsiella pneumoniae after liver transplantation: the importance of pre and posttransplant colonization. Am J Transplant. 2015;15:1708–15.CrossRefGoogle Scholar
  11. 11.
    Lisboa LF, Miranda BG, Vieira MB, et al. Empiric use of linezolid in febrile hematology and hematopoietic stem cell transplantation patients colonized with vancomycin-resistant Enterococcus spp. Int J Infect Dis. 2015;33:171–6.CrossRefGoogle Scholar
  12. 12.
    Cho SY, Lee DG, Sm C, et al. Impact of vancomycin resistance on mortality in neutropenic patients with enterococcal bloodstream infection: a retrospective study. BMC Infect Dis. 2013;13:504.CrossRefGoogle Scholar
  13. 13.
    Le Clech L, Talarmin JP, Couturier MA, et al. Early discontinuation of empirical antibacterial therapy in febrile neutropenia: the ANTIBIOSTOP study. Infect Dis (Lond). 2018;50(7):539–49.  https://doi.org/10.1080/23744235.
  14. 14.
    Averbuch D, Orasch C, Cordonnier C, et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European conference on infections in leukemia. Haematologica. 2013;98:1826–35.CrossRefGoogle Scholar
  15. 15.
    Aguilar-Guisado M, Espigado I, Martin-Pena A, et al. Optimisation of empirical antimicrobial therapy in patients with haematological malignancies and febrile neutropenia (how long study): an open-label, randomized, controlled phase 4 trial. Lancet Haematol. 2017;4:e573–83.CrossRefGoogle Scholar
  16. 16.
    Snyder M, Pasikhova Y, Baluch A. Early antimicrobial de-escalation and stewardship in adult hematopoietic stem cell transplantation recipients: retrospective review. Open Forum Infect Dis. 2017;11(4):ofx226.  https://doi.org/10.1093/ofid/ofx226.CrossRefGoogle Scholar
  17. 17.
    Gustinetti G, Raiola AM, Varaldo R et al. De-escalation and discontinuation of empirical antibiotic treatment in a cohort of allogeneic hematopoietic stem cell transplantation recipients during the pre-engraftment period. Biol Blood Marrow Transplant 2018; pii:S1083-8791(18)30131-9. doi:  https://doi.org/10.1016/j.bbmt
  18. 18.
    Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis. 2016;62:e51.CrossRefGoogle Scholar
  19. 19.
    Seo SK, Lo K, Aboo L. Current state of antimicrobial stewardship at solid organ and hematopoietic cell transplant centers in the US. Infect Control Hosp Epidemiol. 2016;37:1195.CrossRefGoogle Scholar
  20. 20.
    Metan G, Kaynar L, Yozgat N, et al. A change for the antibacterial treatment policy to decrease carbapenem consumption at a haematopoietic stem cell transplantation centre. Infez Med. 2017;25:33.PubMedGoogle Scholar
  21. 21.
    Nivoix Y, Launoy A, Moulin JC, et al. Adherence to recommendations for the use of antifungal agents in a tertiary care hospital. J Antimicrob Chemother. 2012;67:2506–13.CrossRefGoogle Scholar
  22. 22.
    Sutepvarnon A, Apisarnthanarak A, Camins B, et al. Inappropriate use of antifungal medications in a tertiary care center in Thailand: a prospective study. Infect Control Hosp Epidemiol. 2008;29:370–3.CrossRefGoogle Scholar
  23. 23.
    Singh N, Wagener MM, Cacciarelli TV, et al. Antifungal management practices in liver transplant recipients. Am J Transplant. 2008;8:426–31.CrossRefGoogle Scholar
  24. 24.
    Munoz P, Rojas L, Cervera C, et al. Poor compliance with antifungal drug use guideline by transplant physicians: a framework for educational guidelines and an international consensus on patient safety. Clin Transpl. 2012;26:87–96.CrossRefGoogle Scholar
  25. 25.
    Lelievre L, Groh M, Angebault C, et al. Azole resistant Aspergillus fumigates: an emerging problem. Med Mal Infect. 2013;43:139–45.CrossRefGoogle Scholar
  26. 26.
    Vallabhaneni S, Cleveland AA, Farley MM, et al. Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based Candidemia Surveillance Program, 2008-2014. Open Forum Infect Dis. 2015;2:ofv163.CrossRefGoogle Scholar
  27. 27.
    Clancy CJ, Nguyen MH. Emergence of Candida auris: an international call to arms. Clin Infect Dis. 2017;64:141–3.CrossRefGoogle Scholar
  28. 28.
    Legouge C, Caillot D, Chretien ML, et al. The reversed halo sign: pathognomonic pattern of pulmonary mucormycosis in leukemic patients with neutropenia? Clin Infect Dis. 2014;58:672–8.CrossRefGoogle Scholar
  29. 29.
    Millon L, Herbrecht R, Grenouillet F, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin Microbiol Infect. 2016 Sep;22(9):810.e1–8.  https://doi.org/10.1016/j.cmi.2015.12.006.CrossRefGoogle Scholar
  30. 30.
    Maertens JA, Blennow O, Duarte RF, et al. The current management landscape: aspergillosis. J Antimicrob Chemother. 2016;71(Suppl 2):ii23–9.CrossRefGoogle Scholar
  31. 31.
    Brodska H, Drabek T, Malickova K, et al. Marked increase of procalcitonin after the administration of antithymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study. Crit Care. 2009;13:R37.CrossRefGoogle Scholar
  32. 32.
    Sakr Y, Sponholz C, Tuche F, et al. The role of procalcitonin in febrile neutropenic patients: review of the literature. Infection. 2008;36:396–407.CrossRefGoogle Scholar
  33. 33.
    Sanchez-Yepes M, Aznar-Oroval E, Lorente-Alegre P, et al. Use of procalcitonin and C-reactive protein in infection markers in febrile neutropenic patients undergoing haematopoietic stem cell transplant. Enferm Infecc Microbiol Clin. 2014;32:418–23.CrossRefGoogle Scholar
  34. 34.
    Lima SS, Nobre V, de Castro Romanelli RM et al. Procalcitonin-guided protocol is not useful to manage antibiotic therapy in febrile neutropenia: a randomized controlled trial. Ann Hematol. 2016;95(7):1169–76.  https://doi.org/10.1007/s00277-016-2639-5.CrossRefGoogle Scholar
  35. 35.
    Stover KR, Kenney RM, King ST, et al. Evaluation of the use of novel biomarkers to augment antimicrobial stewardship program activities. Pharmacotherapy. 2018;38:271–83.CrossRefGoogle Scholar
  36. 36.
    Robilotti E, Holubar M, Seo SK, et al. Feasibility and applicability of antimicrobial stewardship in immunocompromised patients. Curr Opin Infect Dis. 2017;30:346–53.CrossRefGoogle Scholar
  37. 37.
    Minejima E, Wong-Beringer A. Implementation of rapid diagnostics with antimicrobial stewardship. Expert Rev Anti-Infect Ther. 2016;14:1065–75.CrossRefGoogle Scholar
  38. 38.
    Messacar K, Paker SK, Todd JK, et al. Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship. J Clin Microbiol. 2017;55:715–23.CrossRefGoogle Scholar
  39. 39.
    Novais A, Brilhante M, Pres J, et al. Evaluation of the recently launched rapid carb blue kit for detection of carbapenemase-producing Gram-negative bacteria. J Clin Microbiol. 2015;53:3105–7.CrossRefGoogle Scholar
  40. 40.
    Poirel L, Nordmann P. Rapidec carba NP test for rapid detection of carbapenemase producers. J Clin Microbiol. 2015;53:3003–8.CrossRefGoogle Scholar
  41. 41.
    Garcia-Fernandez S, Morosini MI, Gijon D, et al. Detection of carbapenemase production in a collection of Enterobacteriaceae with characterized resistance mechanisms from clinical and environmental origins by use of both Carba NP and Blue-Carba tests. J Clin Microbiol. 2016;54:464–6.CrossRefGoogle Scholar
  42. 42.
    Lutgring JD, Bittencourt C, TeKippe EM, et al. Evaluation of the accelerate pheno system: result from two academic medical centers. J Clin Microbiol. 2018;56:e01672–17.CrossRefGoogle Scholar
  43. 43.
    Cassagne C, Normand AC, L’Ollivier C, et al. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016;59:678–90.CrossRefGoogle Scholar
  44. 44.
    Perez KK, Olsen RJ, Musick WL, et al. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect. 2014;69:216–25.CrossRefGoogle Scholar
  45. 45.
    Parente DM, Cunha CB, Mylonakis E, et al. The clinical utility of methicillin resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: a diagnostic meta-analysis with antimicrobial stewardship implications. Clin Infect Dis. 2018;67:1–7.  https://doi.org/10.1093/cid/ciy024.CrossRefPubMedGoogle Scholar
  46. 46.
    Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–111.CrossRefGoogle Scholar
  47. 47.
    McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;xx(00):1–48.CrossRefGoogle Scholar
  48. 48.
    Semret M, Schiller I, Jardin BA, et al. Multiplex respiratory virus testing for antimicrobial stewardship: a prospective assessment of antimicrobial use and clinical outcomes among hospitalized adults. J Infect Dis. 2017;216:936–44.CrossRefGoogle Scholar
  49. 49.
    Pfaller MA, Wolk DM, Lowery TJ. T2MR and T2Candida: novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Micoribiol. 2016;11:103–17.CrossRefGoogle Scholar
  50. 50.
    Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60:892–9.CrossRefGoogle Scholar
  51. 51.
    Wilson JM, Alangaden G, Tibbetts RJ, et al. T2 magnetic resonance assay improves timely management of candidemia. J Antimicrob Stewardship. 2017;1:12–8.Google Scholar
  52. 52.
    Patch ME, Weisz E, Cubillos A, et al. Impact of rapid, culture-independent diagnosis of candidaemia and invasive candidiasis in a community health system. J Antimicrob Chemother. 2018;73:iv27–30.CrossRefGoogle Scholar
  53. 53.
    Munita JM, Aitken SL, Miller WR, et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2017;65:158–61.CrossRefGoogle Scholar
  54. 54.
    Ang JY, Abdel-Haq N, Zhu F, et al. Multidrug-resistant Pseudomonas aeruginosa infection in a child with cystic fibrosis. Antimicrob Agents Chemother. 2016;60:5627–30.CrossRefGoogle Scholar
  55. 55.
    Rico-Caballero V, Abuhussain SA, Kuti JL et al. Efficacy of human-simulated exposures of ceftolozane/tazobactam alone and in combination with amikacin or colistin against multidrug-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamics model. Antimicrob Agents Chemother 2018. pii: AAC.02384-17. doi:  https://doi.org/10.1128/AAC.02384-17.
  56. 56.
    Trubiano JA, Pai Mangalore R, Baey YW, et al. Old but not forgotten: antibiotic allergies in general medicine (the AGM study). Med J Aust. 2016;204:273.CrossRefGoogle Scholar
  57. 57.
    Gonzalez C, Rubio M, Romero-Vivas J, et al. Bacteremic pneumonia due to Staphylococcus aureus: a comparison of disease caused by methicillin-resistant and methicillin-susceptible organisms. Clin Infect Dis. 1999;29:1171.CrossRefGoogle Scholar
  58. 58.
    Li M, Krishna MT, Razag S, et al. A real-time prospective evaluation of clinical pharmaco-economic impact of diagnostic label of ‘penicillin allergy’ in a UK teaching hospital. J Clin Pathol. 2014;67:1088–92.CrossRefGoogle Scholar
  59. 59.
    Blumenthal KG, Shenov ES, Varughese CA, et al. Impact of a clinical guideline for prescribing antibiotics to inpatients reporting penicillin or cephalosporin allergy. Ann Allergy Asthma Immunol. 2015;115:294–300.CrossRefGoogle Scholar
  60. 60.
    Charneski L, Deshpande G, Smith SW, et al. Impact of an antimicrobial allergy label in the medical record on clinical outcomes in hospitalized patients. Pharmacotherapy. 2011;31:742–7.CrossRefGoogle Scholar
  61. 61.
    Sigona NS, Steele JM, Miller CD. Impact of a pharmacist-driven beta-lactam allergy interview on inpatient antimicrobial therapy: a pilot project. J Am pharm Assoc (2003). 2016;56:665.CrossRefGoogle Scholar
  62. 62.
    Heil EL, Bork JT, Schmalzle SA, et al. Implementation of an infectious disease fellow-managed penicillin allergy skin testing service. Open Forum Infect Dis. 2016;3:ofw155.CrossRefGoogle Scholar
  63. 63.
    Chen JR, Tarver SA, Alvarez KS, et al. A proactive approach to penicillin allergy testing in hospitalized patients. J Allergy Clin Immunol Pract. 2017;5:686–93.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wonhee So
    • 1
  1. 1.San AntonioUSA

Personalised recommendations