Advertisement

Sensitivity Analysis of Load Application Methods for Shell Finite Element Models

  • Wilson Javier Veloz ParraEmail author
  • Younes Aoues
  • Didier Lemosse
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

Wind turbine blades are subjected to wind pressure and inertial loads from their rotational velocity and acceleration, that depends on the external environment and the turbine control (start-up, normal energy production, shut down procedures, etc.). Several numerical tools are developed to compute the applied loads to the wind turbine blades. These numerical tools are generally based on multiphysics simulation (aeroelasticity, aerodynamics, turbulence, etc.) and multibody beam finite element model of the whole turbine. However, when we are interested in optimizing the structural blades, we need to use shell finite element models in the structural analysis. Thus, the loads estimated by using the beam element are transformed into a 3D distribution pressure loads for the shell element. Several Load Application Methods are developed in the literature. However, in the context of the structural reliability analysis and optimization of the wind turbine blades, the suitable method should be selected with respect to his sensitivity to uncertain input parameters. This study present, a sensitivity analysis of the output of two load application methods for shell finite element models, with respect to uncertain input parameters as loads and material properties. The Morris method is used to carry out a sensitivity analysis. Both load application methods are sensitive to the change of the thickness in the materials and have a greater effect than the distributed loads applied by section.

Keywords

Load application Sensitivity analysis Morris method Shell finite element model 

References

  1. 1.
    Baudin, M., Dutfoy, A., Iooss, B., Popelin, A.L.: OpenTURNS: an industrial software for uncertainty quantification in simulation. In: Handbook of Uncertainty Quantification, pp. 2001–2038 (2017)CrossRefGoogle Scholar
  2. 2.
    Bottasso, C.L., Campagnolo, F., Croce, A., Dilli, S., Gualdoni, F., Nielsen, M.B.: Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis. Multibody Syst. Dynam. 32(1), 87–116 (2014)CrossRefGoogle Scholar
  3. 3.
    Branner, K., Berring, P., Berggreen, C., Knudsen, H.W.: Torsional performance of wind turbine blades–part ii: Numerical validation. In: 16th International Conference on Composite Materials, Anonymous, pp. 8–13 (2007)Google Scholar
  4. 4.
    Caous, D., Valette, J.: Methodology for G1 blade assessment. Technical report, TENSYL, La Rochelle (2014)Google Scholar
  5. 5.
    Caous, D., Lavauzelle, N., Valette, J., Wahl, J.C.: Load application method for shell finite element model of wind turbine blade. Wind Eng. 42(5), 467–482 (2018)CrossRefGoogle Scholar
  6. 6.
    EDF: Finite element \(\mathbf{}code\_aster\), analysis of structures and thermomechanics for studies and research, year = 1989–2017. Open source on www.code-aster.org
  7. 7.
    Forcier, L.C., Joncas, S.: Development of a structural optimization strategy for the design of next generation large thermoplastic wind turbine blades. Struct. Multidiscip. Optim. 45(6), 889–906 (2012)CrossRefGoogle Scholar
  8. 8.
    Griffith, D.T., Ashwill, T.D.: The sandia 100-meter all-glass baseline wind turbine blade: Snl100-00. Sandia National Laboratories, Albuquerque, Report No. SAND2011-3779, p. 67 (2011)Google Scholar
  9. 9.
    Guideline, G., Lloyd, G.: Guideline for the certification of wind turbines. Germanischer Lloyd Wind Energie Gmb H, Hamburg (2010)Google Scholar
  10. 10.
    Haselbach, P.U., Bitsche, R., Branner, K.: The effect of delaminations on local buckling in wind turbine blades. Renew. Energy 85, 295–305 (2016)CrossRefGoogle Scholar
  11. 11.
    Hu, W., Choi, K., Zhupanska, O., Buchholz, J.H.: Integrating variable wind load, aerodynamic, and structural analyses towards accurate fatigue life prediction in composite wind turbine blades. Struct. Multid. Optim. 53(3), 375–394 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jonkman, J.M., Buhl, Jr. M.L.: Fast user’s guide-updated august 2005. Technical report, National Renewable Energy Laboratory (NREL) (2005)Google Scholar
  13. 13.
    Kaltschmitt, M., Streicher, W., Wiese, A.: Renewable Energy: Technology, Economics and Environment. Springer Science & Business Media, Heidelberg (2007)Google Scholar
  14. 14.
    Knill, T.J.: The application of aeroelastic analysis output load distributions to finite element models of wind. Wind Eng. 29(2), 153–168 (2005)CrossRefGoogle Scholar
  15. 15.
    Larsen, T.J., Hansen, A.M.: How 2 HAWC2, the user’s manual. Technical report, Risø National Laboratory (2007)Google Scholar
  16. 16.
    Mandell, J., Samborsky, D.: SNL/MSU/DOE composite material fatigue database mechanical properties of composite materials for wind turbine blades version 25.0. Montana State University (2016)Google Scholar
  17. 17.
    Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)CrossRefGoogle Scholar
  18. 18.
    Panofsky, H.A.: Atmospheric Turbulence. Models and Methods for Engineering Applications. 397 (1984)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wilson Javier Veloz Parra
    • 1
    Email author
  • Younes Aoues
    • 1
  • Didier Lemosse
    • 1
  1. 1.Normandie Univ, INSA Rouen Normandie, LMNRouenFrance

Personalised recommendations