Advertisement

Finding Global-Optimal Gearbox Designs for Battery Electric Vehicles

  • Philipp LeiseEmail author
  • Lena C. Altherr
  • Nicolai Simon
  • Peter F. Pelz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements.

Keywords

Powertrain Gearbox Optimization BEV WLTP MINLP Gaussian mixture model Piecewise linearization 

Notes

Funding

Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 57157498 – SFB 805.

References

  1. 1.
    Altherr, L.C., Dörig, B., Ederer, T., Pelz, P.F., Pfetsch, M.E., Wolf, J.: A mixed integer nonlinear program for the design of mechanical transmission systems. Oper. Res. Proc. 2016, 227–233 (2018)CrossRefGoogle Scholar
  2. 2.
    Barber, C.B., Dobkin, D.P., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bishop, C.: Pattern Recognition and Machine Learning, vol. 1. Springer (2006)Google Scholar
  5. 5.
    Bussieck, M.R., Vigerske, S.: MINLP solver software (2010)Google Scholar
  6. 6.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)CrossRefGoogle Scholar
  7. 7.
    DIN 780-1: Series of modules for gears; modules for spur gears (1977)Google Scholar
  8. 8.
    Dörig, B., Ederer, T., Pelz, P.F., Pfetsch, M.E., Wolf, J.: Gearbox design via mixed-integer programming. In: Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (2016)Google Scholar
  9. 9.
    Egbue, O., Long, S.: Barriers to widespread adoption of electric vehicles: an analysis of consumer attitudes and perceptions. Energy Policy 48, 717–729 (2012)CrossRefGoogle Scholar
  10. 10.
    Gao, B., Liang, Q., Xiang, Y., Guo, L., Chen, H.: Gear ratio optimization and shift control of 2-speed I-AMT in electric vehicle. Mech. Syst. Signal Process. 50, 615–631 (2015)CrossRefGoogle Scholar
  11. 11.
    Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Wegscheider, F., Walter, M., Witt, J.T., Witzig, J.: The SCIP optimization suite 6.0. Tech. rep. (2018). (Optimization Online)Google Scholar
  12. 12.
    Grunditz, E.A., Thiringer, T.: Characterizing BEV powertrain energy consumption, efficiency, and range during official and drive cycles from Gothenburg, Sweden. IEEE Trans. Veh. Technol. 65(6), 3964–3980 (2016)CrossRefGoogle Scholar
  13. 13.
    Guzzella, L., Sciarretta, A., et al.: Vehicle Propulsion Systems, vol. 1. Springer (2007)Google Scholar
  14. 14.
    Hadj, N.B., Abdelmoula, R., Chaieb, M., Neji, R.: Permanent magnet motor efficiency map calculation and small electric vehicle consumption optimization. J. Electr. Syst. 14(2), (2018)Google Scholar
  15. 15.
    Hofstetter, M., Lechleitner, D., Hirz, M., Gintzel, M., Schmidhofer, A.: Multi-objective gearbox design optimization for xEV-axle drives under consideration of package restrictions. Forsch. Im Ing. 82(4), 361–370 (2018)CrossRefGoogle Scholar
  16. 16.
    Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.: PySCIPOpt: mathematical programming in python with the SCIP optimization suite. In: International Congress on Mathematical Software, pp. 301–307. Springer (2016)Google Scholar
  17. 17.
    McDonald, R.: Electric motor modeling for conceptual aircraft design. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 941 (2013)Google Scholar
  18. 18.
    Misener, R., Floudas, C.: Piecewise-linear approximations of multidimensional functions. J. Optim. Theory Appl. 145(1), 120–147 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rinderknecht, S., Meier, T.: Electric power train configurations and their transmission systems. In: International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM), pp. 1564–1568. IEEE (2010)Google Scholar
  20. 20.
    Salomon, S., Avigad, G., Purshouse, R.C., Fleming, P.J.: Gearbox design for uncertain load requirements using active robust optimization. Eng. Optim. 48(4), 652–671 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Savsani, V., Rao, R., Vakharia, D.: Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mech. Mach. Theory 45(3), 531–541 (2010)CrossRefGoogle Scholar
  22. 22.
    Schönknecht, A., Babik, A., Rill, V.: Electric powertrain system design of BEV and HEV applying a multi objective optimization methodology. Transp. Res. Procedia 14, 3611–3620 (2016)CrossRefGoogle Scholar
  23. 23.
    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming: modeling and theory. SIAM (2009)Google Scholar
  24. 24.
    Tan, S., Yang, J., Zhao, X., Hai, T., Zhang, W.: Gear ratio optimization of a multi-speed transmission for electric dump truck operating on the structure route. Energies 11(6), 1324 (2018)CrossRefGoogle Scholar
  25. 25.
    Tutuianu, M., Marotta, A., Steven, H., Ericsson, E., Haniu, T., Ichikawa, N., Ishii, H.: Development of a world-wide worldwide harmonized light duty driving test cycle (WLTC). Draft Technical Report, DHC subgroup, GRPE-67-03 (2013)Google Scholar
  26. 26.
    Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wittel, H., Muhs, D., Jannasch, D., Voßiek, J.: Roloff/Matek Maschinenelemente, vol. 21. Vieweg + Teubner Verlag (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Philipp Leise
    • 1
    Email author
  • Lena C. Altherr
    • 1
  • Nicolai Simon
    • 1
  • Peter F. Pelz
    • 1
  1. 1.Chair of Fluid SystemsTU DarmstadtDarmstadtGermany

Personalised recommendations