Advertisement

Discrete Interval Adjoints in Unconstrained Global Optimization

  • Jens DeussenEmail author
  • Uwe Naumann
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

We describe how to deploy interval derivatives up to second order in the context of unconstrained global optimization with a branch and bound method. For computing these derivatives we combine the Boost interval library and the algorithmic differentiation tool dco/c++. The differentiation tool also computes the required floating-point derivatives for a local search algorithm that is embedded in our branch and bound implementation. First results are promising in terms of utility of interval adjoints in global optimization.

Keywords

Discrete adjoints Algorithmic differentiation Interval arithmetic Branch and bound Global optimization 

References

  1. 1.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd edn. SIAM, Philadelphia, PA (2008)Google Scholar
  2. 2.
    Naumann, U.: The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation. SIAM, Philadelphia (2012)zbMATHGoogle Scholar
  3. 3.
    Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18(1), 5595–5637 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Giles, M., Glasserman, P.: Smoking adjoints: fast monte carlo greeks. Risk 19(1), 88–92 (2006)Google Scholar
  5. 5.
    Towara, M., Naumann, U.: SIMPLE adjoint message passing. Optim. Methods Softw. 33(4–6), 1232–1249 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Moore, R.E.: Methods and Applications of Interval Analysis, 2nd edn. SIAM, Philadelphia (1979)CrossRefGoogle Scholar
  7. 7.
    Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  8. 8.
    Hansen, E., Walster, G.W.: Global Optimization using Interval Analysis. Marcel Dekker, New York (2004)zbMATHGoogle Scholar
  9. 9.
    Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization, 2nd edn. Springer, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Vassiliadis, V., Riehme, J., Deussen, J., Parasyris, K., Antonopoulos, C.D., Bellas, N., Lalis, S., Naumann, U.: Towards automatic significance analysis for approximate computing. In: Proceedings of CGO 2016, pp. 182–193. ACM, New York, (2016)Google Scholar
  12. 12.
    Hascoët, L., Naumann, U., Pascual, V.: “To be recorded” analysis in reverse-mode automatic differentiation. FGCS 21(8), 1401–1417 (2005)CrossRefGoogle Scholar
  13. 13.
    Naumann, U., Lotz, J., Leppkes, K., Towara, M.: Algorithmic differentiation of numerical methods: tangent and adjoint solvers for parameterized systems of nonlinear equations. ACM Trans. Math. Softw. 41(4), 26:1–26:21 (2015)CrossRefGoogle Scholar
  14. 14.
    Brönnimann, H., Melquiond, G., Pion, S.: The design of the Boost interval arithmetic library. Theor. Comput. Sci. 351(1), 111–118 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dixon, L.C.W., Szegö, G.P.: The global optimization problem: an introduction. In: Towards Global Optimization, vol. 2, pp. 1–15. North-Holland, Amsterdam (1978)Google Scholar
  16. 16.
    Griewank, A.: Generalized decent for global optimization. J. Optim Theory Appl. 34(1), 11–39 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Styblinski, M.A., Tang, T.S.: Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing. Neural Netw. 3(4), 467–483 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Software and Tools for Computational EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations