Necessary Optimality Condition for Nonlinear Interval Vector Programming Problem Under B-Arcwise Connected Functions

  • Mohan Bir SubbaEmail author
  • Vinay Singh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)


We consider the nonlinear interval vector programming problem (NIVP) for solving uncertainty programming problems and introduced the set of B-arcwise connected interval-valued function (BCIF) and strictly BCIF (SBCIF) by generalizing the notion of arcwise connected interval-valued function. Arcwise connected function is a generalization of convex function which is defined on the arcwise connected set [2]. The differentiability of the function is studied by introducing right generalized Hukuhara derivative (gH-derivative or gH-differentiable). The extremum conditions for the functions under right gH-derivative have been derived. This is a new type of NIVP with right gH-differentiable function in both multiple objective and constraints involving BCIFs. The Fritz-John kind and Karush-Kuhn-Tucker kind necessary weakly LU-efficiency condition for NIVP are obtained with right gH-differentiable BCIFs in both multiple objective function and constraints functions.


Interval-valued function Arcwise connected Optimality condition Interval optimization Hukuhara difference 


  1. 1.
    Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Sci. 37B(4), 1133–1150 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avriel, M., Zang, I.: Generalized arcwise-connected functions and characterization of local-global minimum properties. J. Optim. Theory Appl. 32(4), 407–425 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bhatia, D., Mehra, A.: Optimality conditions and duality involving arcwise connected and generalized arcwise connected functions. J. Optim. Theory Appl. 100(1), 181–194 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cambini, A., Martein, L.: Generalized Convexity and Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 616. Springer, Berlin (2009)Google Scholar
  5. 5.
    Chalco-Cano, Y., Rufian-Lizana, A., Rom án-Flores, H., Jim énez-Gamero, M.D.: Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 219, 49–67MathSciNetCrossRefGoogle Scholar
  6. 6.
    Davar, S., Mehra, A.: Optimality and duality for fractional programming problems involving arcwise connected functions and their generalizations. J. Math. Anal. Appl. 263(2), 666–682 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hukuhara, M.: Integration des applications mesurables dont la valeur est un compact convexe. Funkc. Ekvacioj 10, 205–223 (1967)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Jana, M., Panda, G.: Solution of nonlinear interval vector optimization problem. Oper. Res. Int. J. 14(1), 71–85 (2014)CrossRefGoogle Scholar
  9. 9.
    Li, L., Liu, S., Zhang, J.: On interval-valued invex mappings and optimality conditions for interval-valued optimization problems. J. Inequal. Appl. 179, 2–19 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Osuna-Gómez, R., Chalco-Cano, Y., Hernández-Jiménez, B., Ruiz-Garzón, G.: Optimality conditions for generalized differentiable interval-valued functions. Inf. Sci. 321, 136–146 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y., Ruiz-Garzón, G.: New efficiency conditions for multiobjective interval-valued programming problems. Inf. Sci. 420, 235–248 (2017)CrossRefGoogle Scholar
  12. 12.
    Saric, A.T., Stankovic, A.M.: An application of interval analysis and optimization to electric energy markets. IEEE Trans. Power Syst. 21(2), 515–523 (2006)CrossRefGoogle Scholar
  13. 13.
    Singh, C.: Elementary properties of arcwise connected sets and functions. J. Optim. Theory Appl. 41(2), 377–387 (1983)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71(3–4), 1311–1328 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tian, W., Ni, B., Jiang, C., Wu, Z.: Uncertainty analysis and optimization of sinter cooling process for waste heat recovery. Appl. Therm. Eng. 150(1), 111–120 (2019)CrossRefGoogle Scholar
  16. 16.
    Wang, H., Zhang, R.: Optimality conditions and duality for arcwise connected interval optimization problems. Opsearch 52(4), 870–883 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wu, H.C.: On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338(1), 299–316 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wu, H.C.: Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138(3), 497–509 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wu, H.C.: The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196(1), 49–60 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, Q.: Optimality conditions and duality for semi-infinite programming involving B-arcwise connected functions. J. Glob. Optim. 45(4), 615–629 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Institute of Technology MizoramAizawlIndia

Personalised recommendations