Advertisement

A Mixture Design of Experiments Approach for Genetic Algorithm Tuning Applied to Multi-objective Optimization

  • Taynara Incerti de PaulaEmail author
  • Guilherme Ferreira Gomes
  • José Henrique de Freitas Gomes
  • Anderson Paulo de Paiva
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

This study applies mixture design of experiments combined with process variables in order to assess the effect of the genetic algorithm parameters in the solution of a multi-objective problem with weighted objective functions. The proposed method allows defining which combination of parameters and weights should be assigned to the objective functions in order to achieve target results. A study case of a flux cored arc welding process is presented. Four responses were optimized by using the global criterion method and three genetic algorithm parameters were analyzed. The method proved to be efficient, allowing the detection of significant interactions between the algorithm parameters and the weights for the objective functions and also the analysis of the parameters effect on the problem solution. The procedure also proved to be efficient for the definition of the optimal weights and parameters for the optimization of the welding process.

Keywords

Genetic algorithm tuning Mixture design of experiments Multi-objective optimization Global criterion method 

References

  1. 1.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004).  https://doi.org/10.1007/s00158-003-0368-6MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Rao, S.S.: Engineering Optimization: Theory and Practice, 4th edn. Wiley, New Jersey (2009)CrossRefGoogle Scholar
  3. 3.
    Heredia-Langner, A., Montgomery, D.C., Carlyle, W.M.: Solving a multistage partial inspection problem using genetic algorithms. Int. J. Product. Res. 40(8), 1923–1940 (2002).  https://doi.org/10.1080/00207540210123337CrossRefGoogle Scholar
  4. 4.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. Ph.D. thesis, University of Michigan Press (1975).  https://doi.org/10.1086/418447CrossRefGoogle Scholar
  5. 5.
    Zain, A.M., Haron, H., Sharif, S.: Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst. Appl. 37(6), 4650–4659 (2010).  https://doi.org/10.1016/j.eswa.2009.12.043CrossRefGoogle Scholar
  6. 6.
    Fleming, P., Purshouse, R.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Pract. 10(11), 1223–1241 (2002).  https://doi.org/10.1016/S0967-0661(02)00081-3CrossRefGoogle Scholar
  7. 7.
    Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic algorithm for continuous optimization problems 37 (2007).  https://doi.org/10.1007/s10898-006-9056-6MathSciNetCrossRefGoogle Scholar
  8. 8.
    Candan, G., Yazgan, H.R.: Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. Int. J. Product. Res. 53(3), 897–915 (2014).  https://doi.org/10.1080/00207543.2014.939244CrossRefGoogle Scholar
  9. 9.
    Weise, T., Wu, Y., Chiong, R., Tang, K., Lässig, J.: Global versus local search: the impact of population sizes on evolutionary algorithm performance. J. Global Optim. 1–24 (2016).  https://doi.org/10.1007/s10898-016-0417-5MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ortiz, F., Simpson, J.R., Pignatiello, J.J., Heredia-langner, A.: A genetic algorithm approach to multiple-response optimization. J. Qual. Technol. 36(4), 432–450 (2004)CrossRefGoogle Scholar
  11. 11.
    Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(February), 122–128 (1986)CrossRefGoogle Scholar
  12. 12.
    Eiben, A.E., Smit, S.K.: Evolutionary algorithm parameters and methods to tune them. In: Autonomus Search, Chap. 2, pp. 15–36. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-21434-9Google Scholar
  13. 13.
    Alajmi, A., Wright, J.: Selecting the most efficient genetic algorithm sets in solving unconstrained building optimization problem. Int. J. Sustain. Built Environ. 3(1), 18–26 (2014).  https://doi.org/10.1016/j.ijsbe.2014.07.003CrossRefGoogle Scholar
  14. 14.
    Fernandez-Prieto, J.a., Canada-Bago, J., Gadeo-Martos, M.a., Velasco, J.R.: Optimisation of control parameters for genetic algorithms to test computer networks under realistic traffic loads. Appl. Soft Comput. J. 12(4), 1875–1883 (2012).  https://doi.org/10.1016/j.asoc.2012.04.018CrossRefGoogle Scholar
  15. 15.
    Núñez-Letamendia, L.: Fitting the control parameters of a genetic algorithm: an application to technical trading systems design. Eur. J. Oper. Res. 179, 847–868 (2007).  https://doi.org/10.1016/j.ejor.2005.03.067CrossRefzbMATHGoogle Scholar
  16. 16.
    Costa, C.B.B., Rivera, E.A.C., Rezende, M.C.A.F., Maciel, M.R.W., Filho, R.M.: Prior detection of genetic algorithm significant parameters: coupling factorial design technique to genetic algorithm. Chem. Eng. Sci. 62, 4780–4801 (2007).  https://doi.org/10.1016/j.ces.2007.03.042CrossRefGoogle Scholar
  17. 17.
    Myers, R., Montgomery, D., Anderson-Cook, C.: Response Surface Methodology, 3 edn. (2009)Google Scholar
  18. 18.
    Cornell, J.A.: A Primer on Experiments with Mixtures, 3rd edn. Wiley, New Jersey (2011)CrossRefGoogle Scholar
  19. 19.
    Gomes, J.H.F., Paiva, A.P., Costa, S.C., Balestrassi, P.P., Paiva, E.J.: Weighted multivariate mean square error for processes optimization: a case study on flux-cored arc welding for stainless steel claddings. Eur. J. Oper. Res. 226(3), 522–535 (2013).  https://doi.org/10.1016/j.ejor.2012.11.042CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Industrial Engineering, Federal University of ItajubáItajubáBrazil
  2. 2.Mechanical Engineering InstituteFederal University of ItajubáItajubáBrazil

Personalised recommendations