Advertisement

Fuzzy Pareto Solutions in Fully Fuzzy Multiobjective Linear Programming

  • Manuel Arana-JiménezEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

In this work, it is proposed a new method for obtaining Pareto solutions of a fully fuzzy multiobjective linear programming problem with fuzzy partial orders and triangular fuzzy numbers, without ranking functions, by means of solving a crisp multiobjective linear problem. It is provided an algorithm to generate Pareto solutions.

Keywords

Multiobjective optimization Fully fuzzy linear programming Fuzzy numbers 

References

  1. 1.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)zbMATHGoogle Scholar
  2. 2.
    Arana-Jiménez, M. (ed.): Optimiality Conditions in Vector Optimization. Bentham Science Publishers Ltd, Bussum (2010)Google Scholar
  3. 3.
    Arana-Jiménez, M., Rufián-Lizana, A., Chalco-Cano, Y., Román-Flores, H.: Generalized convexity in fuzzy vector optimization through a linear ordering. Inf. Sci. 312, 13–24 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arana-Jiménez, M., Antczak, T.: The minimal criterion for the equivalence between local and global optimal solutions in nondifferentiable optimization problem. Math. Meth. Appl. Sci. 40, 6556–6564 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arana-Jiménez, M.: Nondominated solutions in a fully fuzzy linear programming problem. Math. Meth. Appl. Sci. 41, 7421–7430 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Arana-Jiménez, M., Blanco, V.: On a fully fuzzy framework for minimax mixed integer linear programming. Comput. Ind. Eng. 128, 170–179 (2019)CrossRefGoogle Scholar
  7. 7.
    Báez-Sánchez, A.D., Moretti, A.C., Rojas-Medar, M.A.: On polygonal fuzzy sets and numbers. Fuzzy Sets Syst. 209, 54–65 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bharati, S.K., Abhishek, S.R., Singh: A computational algorithm for the solution of fully fuzzy multi-objective linear programming problem. Int. J. Dynam. Control.  https://doi.org/10.1007/s40435-017-0355-1MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bhardwaj, B., Kumar, A.: A note on the paper a simplified novel technique for solving fully fuzzy linear programming problems. J. Optim. Theory Appl. 163, 685–696 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Campos, L., Verdegay, J.L.: Linear programming problems and ranking of fuzzy numbers. Fuzzy Set. Syst. 32, 1–11 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chakraborty, D., Jana, D.K., Roy, T.K.: A new approach to solve fully fuzzy transportation problem using triangular fuzzy number. Int. J. Oper. Res. 26, 153–179 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dubois, D., Prade, H.: Operations on fuzzy numbers. Ins. J. Syst. Sci. 9, 613–626 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  15. 15.
    Ebrahimnejad, A., Nasseri, S.H., Lotfi, F.H., Soltanifar, M.: A primal-dual method for linear programming problems with fuzzy variables. Eur. J. Ind. Eng. 4, 189–209 (2010)CrossRefGoogle Scholar
  16. 16.
    Ezzati, R., Khorram, E., Enayati, R.: A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Appl. Math. Model. 39, 3183–3193 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ganesan, K., Veeramani, P.: Fuzzy linear programs with trapezoidal fuzzy numbers. Ann. Oper. Res. 143, 305–315 (2006)CrossRefGoogle Scholar
  18. 18.
    Ghaznavi, M., Soleimani, F., Hoseinpoor, N.: Parametric analysis in fuzzy number linear programming problems. Int. J. Fuzzy Syst. 18(3), 463–477 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goestschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18, 31–43 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Guerra, M.L., Stefanini, L.: A comparison index for interval based on generalized Hukuhara difference. Soft. Comput. 16, 1931–1943 (2012)CrossRefGoogle Scholar
  21. 21.
    Hanss, M.: Applied Fuzzy Arithmetic Springer, Stuttgart (2005)Google Scholar
  22. 22.
    Jimenez, M., Bilbao, A.: Pareto-optimal solutions in fuzzy multiobjective linear programming. Fuzzy Sets Syst. 160, 2714–2721 (2009)CrossRefGoogle Scholar
  23. 23.
    Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic Theory and Applications. Van Nostrand Reinhold, New York (1985)zbMATHGoogle Scholar
  24. 24.
    Khan, I.U., Ahmad, T., Maan, N.: A simplified novel technique for solving fully fuzzy linear programming problems. J. Optim. Theory Appl. 159, 536–546 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Khan, I.U., Ahmad, T., Maan, N.: A reply to a note on the paper “A simplified novel technique for solving fully fuzzy linear programming problems”. J. Optim. Theory Appl. 173, 353–356 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kumar, A., Kaur, J., Singh, P.: A new method for solving fully fuzzy linear programming problems. Appl. Math. Model. 35, 817–823 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mehlawat, M.K., Kumar, A., Yadav, S., Chen, W.: Data envelopment analysis based fuzzy multi-objective portfolio selection model involving higher moments. Inf. Sci. 460, 128–150 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu, B.: Uncertainty Theory. Springer-Verlag, Heidelberg (2015)zbMATHGoogle Scholar
  29. 29.
    Liu, Q., Gao, X.: Fully fuzzy linear programming problem with triangular fuzzy numbers. J. Comput. Theor. Nanosci. 13, 4036–4041 (2016)CrossRefGoogle Scholar
  30. 30.
    Lotfi, F.H., Allahviranloo, T., Jondabeha, M.A., Alizadeh, L.: Solving a fully fuzzy linear programming using lexicography method and fuzzy approximate solution. Appl. Math. Modell. 3, 3151–3156 (2009)CrossRefGoogle Scholar
  31. 31.
    Maleki, H.R., Tata, M., Mashinchi, M.: Linear programming with fuzzy variables. Fuzzy Set. Syst. 109, 21–33 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Maleki, H.R.: Ranking functions and their applications to fuzzy linear programming. Far East J. Math. Sci. 4, 283–301 (2002)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  34. 34.
    Moore, R.E.: Method and Applications of Interval Analysis. SIAM, Philadelphia (1979)CrossRefGoogle Scholar
  35. 35.
    Najafi, H.S., Edalatpanah, S.A.: A note on "A new method for solving fully fuzzy linear programming problems". Appl. Math. Model. 37, 7865–7867 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Stefanini, L., Sorini, L., Guerra, M.L.: Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets Syst. 157(18), 2423–2455 (2006)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Stefanini, L., Arana-Jiménez, M.: Karush-Kuhn–Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Sets Syst. 262, 1–34 (2019)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wu, H.C.: The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions. Fuzzy Optim. Decis. Making 8, 295–321 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yasin Ali Md., Sultana, A., Khodadad Kha, A.F.M.: Comparison of fuzzy multiplication operation on triangular fuzzy number. IOSR J. Math. 12(4), 35–41 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Statistics and Operational ResearchUniversity of CádizCadizSpain

Personalised recommendations